• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Minimal model theory and its applications

Research Project

Project/Area Number 22K13887
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 11010:Algebra-related
Research InstitutionNiigata University (2023)
Kyoto University (2022)

Principal Investigator

橋詰 健太  新潟大学, 自然科学系, 助教 (40934211)

Project Period (FY) 2022-04-01 – 2025-03-31
Project Status Granted (Fiscal Year 2023)
Budget Amount *help
¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2024: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2023: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2022: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Keywords極小モデル理論 / 正規対 / 一般化された対数的標準対 / 飯高ファイブレーションの有効性 / 有効的固定点自由化定理 / 飯高ファイブレーション / 対数的標準対
Outline of Research at the Start

極小モデル理論は対数的標準対の枠組みで議論でき、現在までの研究により、対数的標準対の極小モデル理論は応用可能な段階にまで発展していると考えている。本研究では、引き続き極小モデル理論の完成を目指しつつも、極小モデル理論を双有理幾何学の他のテーマに応用していく。LC-自明ファイブレーションにおける標準束公式の研究と飯高ファイブレーションの有効性について研究していく。

Outline of Annual Research Achievements

今年度は対数的標準対よりも特異点の悪い正規対に関する極小モデル理論の研究を行った。対数的標準対場合と同様に、豊富な因子を付随させた(偏極化と呼ばれる)正規対に関して、特定の条件の下、極小モデル理論の構築に成功した。これは2020年に発表されたHashizume--Huの結果の一般化になっている。この結果は現在学術誌に投稿中である。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

Hashizume--Huの結果の一般化である正規対の極小モデル理論を構築できたため。

Strategy for Future Research Activity

偏極化された複素代数多様体の極小モデル理論は十分発展しているので、この理論を用いて様々な対象での極小モデル理論を構築していく予定である。

Report

(2 results)
  • 2023 Research-status Report
  • 2022 Research-status Report
  • Research Products

    (16 results)

All 2023 2022

All Journal Article (7 results) (of which Peer Reviewed: 7 results,  Open Access: 1 results) Presentation (9 results) (of which Int'l Joint Research: 1 results,  Invited: 9 results)

  • [Journal Article] Finiteness of log Abundant log Canonical Pairs in log Minimal Model Program with Scaling2023

    • Author(s)
      Hashizume Kenta
    • Journal Title

      Michigan Mathematical Journal

      Volume: - Issue: 5

    • DOI

      10.1307/mmj/20226207

    • Related Report
      2023 Research-status Report
    • Peer Reviewed
  • [Journal Article] A note on lc‐trivial fibrations2023

    • Author(s)
      Hashizume Kenta
    • Journal Title

      Bulletin of the London Mathematical Society

      Volume: 56 Issue: 2 Pages: 551-565

    • DOI

      10.1112/blms.12949

    • Related Report
      2023 Research-status Report
    • Peer Reviewed
  • [Journal Article] Existence of log canonical modifications and its applications2023

    • Author(s)
      Fujino Osamu、Hashizume Kenta
    • Journal Title

      European Journal of Mathematics

      Volume: 9 Issue: 1

    • DOI

      10.1007/s40879-023-00598-0

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Finiteness of log abundant log canonical pairs in log minimal model program with scaling2023

    • Author(s)
      Kenta Hashizume
    • Journal Title

      Michigan Mathematical Journal

      Volume: -

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Non-vanishing theorem for generalized log canonical pairs with a polarization2022

    • Author(s)
      Hashizume Kenta
    • Journal Title

      Selecta Mathematica

      Volume: 28 Issue: 4

    • DOI

      10.1007/s00029-022-00795-x

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Iitaka fibrations for dlt pairs polarized by a nef and log big divisor2022

    • Author(s)
      Hashizume Kenta
    • Journal Title

      Forum of Mathematics, Sigma

      Volume: 10

    • DOI

      10.1017/fms.2022.75

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] ADJUNCTION AND INVERSION OF ADJUNCTION2022

    • Author(s)
      FUJINO OSAMU、HASHIZUME KENTA
    • Journal Title

      Nagoya Mathematical Journal

      Volume: 249 Pages: 119-147

    • DOI

      10.1017/nmj.2022.24

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Presentation] 高次元代数多様体と双有理幾何学2023

    • Author(s)
      Kenta Hashizume
    • Organizer
      新潟大学代数セミナー
    • Related Report
      2023 Research-status Report
    • Invited
  • [Presentation] 極小モデル理論と対数的対2023

    • Author(s)
      Kenta Hashizume
    • Organizer
      新潟大学代数セミナー
    • Related Report
      2023 Research-status Report
    • Invited
  • [Presentation] 対数的標準対の極小モデル理論2023

    • Author(s)
      Kenta Hashizume
    • Organizer
      新潟大学代数セミナー
    • Related Report
      2023 Research-status Report
    • Invited
  • [Presentation] log abundant条件と極小モデル理論2023

    • Author(s)
      Kenta Hashizume
    • Organizer
      新潟大学代数セミナー
    • Related Report
      2023 Research-status Report
    • Invited
  • [Presentation] Minimal Model Theory for Log Canonical Pairs and Log Canonical Loci2023

    • Author(s)
      Kenta Hashizume
    • Organizer
      NCTS Seminar in Algebraic Geometry
    • Related Report
      2023 Research-status Report
    • Invited
  • [Presentation] Kenta Hashizume2023

    • Author(s)
      Minimal model theory for log canonical pairs and log canonical loci
    • Organizer
      湯布院代数幾何学ワークショップ
    • Related Report
      2023 Research-status Report
    • Invited
  • [Presentation] On effective base point freeness for klt pairs2023

    • Author(s)
      Kenta Hashizume
    • Organizer
      Korea-Japan Conference in Algebraic Geometry
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On effective base point freeness for klt pairs2023

    • Author(s)
      Kenta Hashizume
    • Organizer
      The 21st Affine Algebraic Geometry Meeting
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] On lc-trivial fibrations with log big moduli parts2022

    • Author(s)
      橋詰 健太
    • Organizer
      第67回代数学シンポジウム
    • Related Report
      2022 Research-status Report
    • Invited

URL: 

Published: 2022-04-19   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi