Project/Area Number |
22K13911
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 11020:Geometry-related
|
Research Institution | Saga University (2023) Kanazawa University (2022) |
Principal Investigator |
滝岡 英雄 佐賀大学, 理工学部, 非常勤博士研究員 (50755791)
|
Project Period (FY) |
2022-04-01 – 2027-03-31
|
Project Status |
Granted (Fiscal Year 2023)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2026: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2025: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2024: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2023: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2022: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | 結び目 / S_m^N交差交換 / 4移動距離 / HOMFLYPT多項式 / Kauffman多項式 / 係数多項式 / Γ多項式 / ケーブル化不変量 / 多項式不変量 |
Outline of Research at the Start |
3次元空間内の自分自身と交わらない閉曲線である結び目の分類や性質の研究で重要な多項式不変量やそのケーブル化の研究を行う. 特に, Jones多項式のケーブル化である色付きJones多項式は結び目の補空間の双曲体積と関係する体積予想で有名である. 本研究では, Jones多項式と同様にHOMFLYPT多項式とKauffman多項式の両方に含まれる結び目不変量のΓ多項式に着目し, そのケーブル化を研究し, 結び目の新情報を発見する.
|
Outline of Annual Research Achievements |
・絡み目のS_m^N交差交換と多項式不変量の研究 本研究では, HOMFLYPT多項式とKauffman多項式のそれぞれの場合に, 任意のsに対して, 任意の絡み目の0番からs番までの係数多項式が一致する絡み目の無限族が存在することをS_m^N交差交換を導入することで示した. さらに, 自明な結び目のある図式のある交差点におけるS_m^N交差交換で得られる対称性のある結び目の無限族K_m,l^Nは, (N,m,l)=(1,0,0)を除いて, すべて素な結び目であることを示した. 本研究により, pが大きい場合の(p,q)ケーブルΓ多項式に関する予想が得られた.
・結び目の4移動距離の研究 本研究では, 結び目の4半ひねりを0半ひねりに変形する操作とその逆の操作である4移動という局所変形を考える. 4移動が結び目解消操作であるかは未解決問題であるので, 無限大も許容して結び目の4移動距離を4移動で移り合うのに必要な4移動の最小回数で定義する. 先行研究として, 9交点までの結び目の4移動結び目解消数の表を作成した. 本研究では, 7交点までの結び目の4移動距離の表を作成した. さらに, 任意の正整数nに対して, 4移動距離がnになる結び目の無限族K_nを構成した. 本研究は, 金信泰造氏(大阪公立大学)との共同研究である.
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
・絡み目のS_m^N交差交換と多項式不変量の研究 pが大きい場合の(p,q)ケーブルΓ多項式に関する具体的な予想が得られたことは大きな前進である.
・結び目の4移動距離の研究 結び目の4移動距離を評価する新たな手法がいくつか発見できたので表の精密化ができた.
|
Strategy for Future Research Activity |
・絡み目のS_m^N交差交換と多項式不変量の研究 pが大きい場合の(p,q)ケーブルΓ多項式を実際に計算することは困難なので, ケーブル結び目の局所変形とΓ多項式に関する良い関係式を発見することが, 今後の目標である.
・結び目の4移動距離の研究 結び目の4移動距離の表には未決定のものがいくつか存在しているので, それらの決定に向けて, 結び目不変量, 特に多項式不変量やその特殊値で有用なものがないか研究する.
|