Project/Area Number |
22K13979
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 13010:Mathematical physics and fundamental theory of condensed matter physics-related
|
Research Institution | Hitotsubashi University |
Principal Investigator |
本武 陽一 一橋大学, 大学院ソーシャル・データサイエンス研究科, 准教授 (80848672)
|
Project Period (FY) |
2022-04-01 – 2027-03-31
|
Project Status |
Granted (Fiscal Year 2023)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2026: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2025: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2024: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2023: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2022: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
|
Keywords | パターンダイナミクス / 解釈可能AI / 深層ニューラルネットワーク / 保存量推定 / 対称性推定 / 深層ニューラルネット |
Outline of Research at the Start |
非線形・非平衡現象の機序の解明において,しばしばパターンダイナミクス(以下,PD)の理解が重要となる.物理学は科学者の物理的洞察に基づいて大きく発展してきたが,非一様で非周期的な構造を持つPDで洞察力を働かせることは時に困難である.これに対処するには,複雑なデータの内挿的モデル構築を得意とするDeep Neural Networks(以下,DNN)と,物理的洞察によって大胆な理論の抽象化と外挿を実現できる科学者との協業が考えられる.本研究課題では,研究提案者が開発した力学系時系列データを学習したDNNから系の対称性を抽出する手法を基盤として,PDの解釈可能な物理情報を抽出することに取り組む.
|
Outline of Annual Research Achievements |
自然界に存在する非線形・非平衡現象の多くで,パターンとそのダイナミクスを理解することが現象の機序の解明において重要な役割を持つ.物理学は科学者の物理的洞察力に基づく現象の理解によって大きく発展してきたが,非一様で非周期的な秩序構造を持つパターンダイナミクスの理解において洞察力を働かせることは時に困難である.これに対して,Deep Neural Networks (DNN)などの機械学習手法は,犬や猫のような複雑なパターンデータ(自然画像)への適用がなされ,大きな成果を上げている.本研究課題では,複雑なデータの内挿的モデル構築を得意とする機械学習と,物理的洞察によって大胆な理論の抽象化と外挿を実現できる科学者との協業がパターンダイナミクスの理解と予測には重要と考え,これを実現するための数理情報基盤の構築を目的とする.具体的には,系の解釈につながるパターンダイナミクスの縮約モデルを学習したDNNから解釈可能な物理情報である系の対称則を推論する新しい手法の開発を実施する.対称性が抽出されれば,ネーターの定理などの物理的知見を通して,対象とする系の性質の定量的な理解につながることが期待される. 2023年度は,「非線形変換に対する対称性推定法の開発」と「多様なDNNモデルでの対称性推定の実現」を実施した.前者については,2022年度開発した非線形変換の推定法を国際学会で発表した.後者については,DNNモデルの一種であるハミルトニアンニューラルネットワーク(HNN)モデルを対象として,乱流現象の縮約モデルのハミルトニアンを推定する際のHNNの振る舞いとデータを比較することで系の対称性を見出し,その情報を逆にHNNに導入することで高精度なハミルトニアン推定を実現した.これは2025年度開始予定の「HNNとの統合によるパターンダイナミクスの対称性推定」法の開発にも繋がる成果である.
|
Current Status of Research Progress |
Current Status of Research Progress
1: Research has progressed more than it was originally planned.
Reason
「非線形変換に対する対称性推定法の開発」と「多様なDNNモデルでの対称性推定の実現」について,前者については既にルンゲ・レンツベクトルに対応する対称性の推定に成功する手法開発を完了しており,国際学会での発表も実施した.後者についてもHNNモデルへの対称性推定の展開を実現しつつある.これは2025年度開始予定の「HNNとの統合によるパターンダイナミクスの対称性推定」研究にも繋がる成果であり,計画は予定以上に順調に進展している.さらに,本研究と関連してHNNによる磁区構造形成過程のポテンシャル関数推定法の開発や,部分観測された時系列データからのダイナミクス推定法の開発,ベイズ推論による物理モデル推定における,事前分布設計枠組みの開発といった研究成果も得られており,予定されたものより幅広い関連分野での成果が得られている.
|
Strategy for Future Research Activity |
引き続き,「非線形変換に対する対称性推定法の開発」と「多様なDNNモデルでの対称性推定の実現」に向けた研究を実施する.
|