Project/Area Number |
22K13982
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 13020:Semiconductors, optical properties of condensed matter and atomic physics-related
|
Research Institution | Waseda University |
Principal Investigator |
小西 秀樹 早稲田大学, グリーン・コンピューティング・システム研究機構, 客員次席研究員(研究院客員講師) (20934235)
|
Project Period (FY) |
2022-04-01 – 2027-03-31
|
Project Status |
Granted (Fiscal Year 2023)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2026: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2025: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2024: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2023: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
|
Keywords | 冷却原子 / 共振器量子電磁力学 / 単一原子アレイ / Rydberg原子 / 量子計算 |
Outline of Research at the Start |
プログラマブルな光ピンセットアレイにトラップされた単一原子とそのRydberg状態を利用したRydberg原子アレイは,現在量子コンピュータ実現の有力候補と目されている超伝導量子回路やイオントラップに替わる,新たなプラットフォームとして近年注目を集めている.本研究では,Rydberg原子アレイで従来用いられてきたアルカリ原子とは異なる電子配置を持つイッテルビウム原子を用いたRydberg原子アレイを構築し,イッテルビウム原子の特性を生かしたデコヒーレンスの小さい量子ビット操作を実現し,誤り訂正量子計算を目指す.
|
Outline of Annual Research Achievements |
中性原子アレイと光ナノファイバー共振器を用いた量子計算に向けた開発を行った。まずは原理実証実験のためのCs原子を用いた装置の改良を行った。これまでの装置はナノファイバー共振器を入れた真空チャンバー内部をCsのガスで満たして磁気光学トラップ(MOT)を行っていたが、Csのガスの吸着によりナノファイバー共振器の急速な劣化が観測されたため、共振器近傍でのMOTへのCs原子の供給方法を変更した。具体的には作動排気チューブで接続したチャンバーを増設し、その内部をCsガスで満たしソースチャンバーとした。ソースチャンバー内で2次元MOTを行い、共振器の入ったメインチャンバーへは2次元MOTからプッシュビームで冷却されたCs原子のみを押し出しそれを再びナノファイバーの付近で3次元MOTで捕獲する方法に変更した。これまでは原子の供給開始から1週間ほどで劣化していた共振器が、この方法に変更後約4ヶ月経った現在も劣化せずに同じフィネスを保っている。 さらに光ピンセットアレイ生成に向けた光学系を組み上げた。これまでは単一の光ピンセットによるトラップだったが、今後の拡張性を考慮し、空間光位相変調器(SLM)を導入した光ピンセットアレイの生成が可能な系に変更した。CCDカメラにより光ピンセットアレイの生成確認までは完了している。 また、より堅牢な中性原子量子ビットとしてYb原子を用いたナノファイバー共振器系の設計も行った。特にナノファイバー共振器の手軽なインストールが可能で、光ピンセット生成のための外付け対物レンズが設置可能なサイエンスチャンバーをデザインした。
|
Current Status of Research Progress |
Current Status of Research Progress
4: Progress in research has been delayed.
Reason
2023年1月に課題推進者の所属が変わったため、装置の新たな立ち上げが必要となった。また既存のナノファイバー共振器のシステムでは、原子の供給方法に問題があることが明らかとなったため、装置の大幅な改造が必要となった。
|
Strategy for Future Research Activity |
Cs原子の装置では、光ピンセットへの原子のローディングを行っていく。空間光位相変調器(SLM)を用いて光ピンセットアレイをナノファイバー上に生成し単一原子を捕獲する。その際MOTとナノファイバーを空間的に重ねる必要があるため、それにより再びCs原子吸着による共振器の早期劣化が問題となる可能性がある。その場合のバックアップとして、SLMによって自由空間に作成した静的な光ピンセットアレイから、音響光学回折器(AOD)による動的光ピンセットにより単一原子だけをナノファイバー上へと運ぶスキームを確立する。ナノファイバー上に単一原子を並べられた後は共振器と原子の相互作用を共振器分光により確認する。 またYb原子の装置は真空装置およびレーザー系の立ち上げを行い、原子のレーザー冷却およびトラップ、ナノファイバー近傍での単一原子トラップを実装する。
|