Project/Area Number |
22K13988
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 13020:Semiconductors, optical properties of condensed matter and atomic physics-related
|
Research Institution | Institute of Physical and Chemical Research |
Principal Investigator |
Sato Yuki 国立研究開発法人理化学研究所, 創発物性科学研究センター, 基礎科学特別研究員 (90909219)
|
Project Period (FY) |
2022-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2023: ¥260,000 (Direct Cost: ¥200,000、Indirect Cost: ¥60,000)
Fiscal Year 2022: ¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
|
Keywords | トポロジカル物性 / 超伝導 / 薄膜 / 量子輸送 / トポロジカル絶縁体 / スピントロニクス / 磁性 / 量子臨界点 / 創発インダクション / BCS-BECクロスオーバー / アクシオン絶縁体 |
Outline of Research at the Start |
近年物質の電子状態のトポロジカルな性質が注目を浴び、精力的に研究がされている。中でもトポロジカル絶縁体の薄膜は、その電子状態の制御性が高く、異常量子ホール効果やアクシオン絶縁体といった新しい物理現象の研究が進んできた。一方でこれらの系における創発インダクション効果や電気磁気効果の観測などは、応用的な観点からも興味深い問題であるがこれまでに報告例がない。本研究では分子線エピタキシー法によってトポロジカル絶縁体を基本構成要素とする超格子薄膜を設計・作製し、その輸送特性や磁気構造を評価することによって、新規量子輸送現象の観測とその制御を目指す。
|
Outline of Final Research Achievements |
When different materials are placed adjacent to each other, their electronic states can be hybridized, leading to exotic quantum phenomena. The observation and control of such electronic states are being actively researched towards possible applications in next-generation memory and computational devices. In this study, we successfully synthesized a device by layering a magnetic topological insulator and a topological superconductor, both characterized by topological properties of their electronic states. By investigating the electrical properties of this device, we revealed that the theoretical conditions for the emergence of Majorana particles in this device are satisfied.
|
Academic Significance and Societal Importance of the Research Achievements |
薄膜合成技術を駆使することにより、物質の電子状態の制御とトポロジカル超伝導体の候補物質の合成を実証した。特に強磁性と超伝導を共存したトポロジカルなカイラル超伝導体を合成に成功した。本研究成果は今後マヨラナ粒子の検出や制御を行うための良好な物質基盤の構築へと貢献したと考えれる。
|