Project/Area Number |
22K14169
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 18040:Machine elements and tribology-related
|
Research Institution | Yokohama National University |
Principal Investigator |
Okubo Hikaru 横浜国立大学, 大学院環境情報研究院, 助教 (50906352)
|
Project Period (FY) |
2022-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2023: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2022: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
|
Keywords | 超分子 / トライボロジー / 超低摩擦 / 自己修復 / ホストゲスト相互作用 / オペランド計測 / 分光分析 |
Outline of Research at the Start |
自己修復性・超低摩擦性を兼備したトライボロジーシステムの構築を目指して,ホスト-ゲスト相互作用を利用した自己修復性超分子材料に着目し,その摩擦場における自己修復-潤滑機構を種々のオペランド分析により解明する.得られた知見に基づき,超分子のホスト-ゲスト相互作用を利用した自己修復-超低摩擦トライボシステム構築に向けた基盤の確立を試みる.
|
Outline of Final Research Achievements |
In this study, we focused on supramolecular materials, especially host-guest interaction self-healing gels. The prepared supramolecular gels self-repaired immediately after contact with the cut surface, even when the cut surface was cut by a blade. The tribological properties of the gels and their self-healing ability during friction were also confirmed. The self-healing gel exhibited ultra-low friction in the initial stage of sliding. When friction experiments were conducted with the center of the friction surface cut off in advance, it was confirmed that the cut surface was self-repairing during friction by contacting the cut portion due to the shape change of the gel caused by elastic deformation. Therefore, supramolecular gels are expected to be next-generation materials with both “ultra-low friction” and “self-healing” properties.
|
Academic Significance and Societal Importance of the Research Achievements |
生体材料の代替材料として期待される「ハイドロゲル」は,その優れたトライボロジー特性から「人工関節」への応用が期待されている.しかし,ハイドロゲルは耐久性に乏しく,応用に際しては種々の課題がある.本研究では,損傷面の自己修復を可能とする「超分子ゲル」に着眼し,そのトライボロジー応用すなわち「人工関節」への応用を見え据えて,超分子ゲルの「摩擦特性」と「自己修復性」を確認した.その結果,超分子ゲルは,ある特定の摩擦場において「超低摩擦性」を発現し,予め付与した損傷は摩擦時の弾性変形により自己修復可能であることを見出した.このことは,超分子ゲルの生体材料応用を加速させるブレイクスルーとなり得る.
|