Project/Area Number |
22K14291
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 21050:Electric and electronic materials-related
|
Research Institution | Nara Institute of Science and Technology |
Principal Investigator |
|
Project Period (FY) |
2022-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2023: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2022: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
|
Keywords | 酸化物薄膜トランジスタ / 液体プロセス / プラズマプロセス / 酸素空孔 / レーザー / 薄膜欠陥 / 薄膜半導体 / 酸化物半導体 / oxide semiconductors / fully solution TFT / low temperature process / reliability / flexible devices / carrier conc. control / semiconductor laser / plasma / carrier concentration / solution process |
Outline of Research at the Start |
Society 5.0 needs many devices requiring high-throughput sustainable production. Solution process is a cost-effective alternative to vacuum process but has worse performance/reliability. We address this issue by understanding the carrier transport mechanism and how oxygen vacancies influence it.
|
Outline of Final Research Achievements |
We pioneered a sustainable method for producing high-performance, stable amorphous oxide semiconductor (AOS) thin-film transistors (TFTs) through full solution processing. Unlike costly vacuum processes, we used sustainable techniques for all TFT layers, achieving remarkable mobility of up to 40 cm^2/Vs and enhanced stability. Achieve this milestone required a comprehensive understanding of how defect interactions affect conductivity and carrier transport in AOS. Employing plasma and photonic processes (solid-state laser and ultraviolet irradiation), we generated oxygen vacancy (Vo) defects in AOS, modulating conductivity and carrier concentration to create a multifunctional AOS serving as both channel and electrode. Addressing impurity issues inherent in solution AOS, we developed a method to intentionally precipitate impurities from the precursor, which greatly improved TFT performance. We also introduced a novel TFT structure resilient to defects which is promising for solution AOS.
|
Academic Significance and Societal Importance of the Research Achievements |
紫外線照射、固体レーザーアニール、プラズマプロセスなどのさまざまな活性化プロセスがAOSの特性に与える影響を慎重に研究しました。Arプラズマが効果的にVoを生成し、代替方法と比較して高性能かつ優れた安定性を持つ完全溶液プロセスTFTを作成することを実証しました。特にソリューションプロセスの文脈でのVoの科学的理解は、その安定性と性能の両方を改善するために重要です。さらに、完全溶液プロセスTFTの性能と安定性の向上は、高価な真空プロセスではなく持続可能なソリューションプロセスを使用して、すべてのTFT層を最小限の性能および安定性への影響で製造できることを示しており、社会的に重要です。
|