Project/Area Number |
22K14515
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 26050:Material processing and microstructure control-related
|
Research Institution | Oita National College of Technology |
Principal Investigator |
TOKUMARU KAZUKI 大分工業高等専門学校, 機械工学科, 助教 (80909523)
|
Project Period (FY) |
2022-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2023: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2022: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
|
Keywords | スピンコート / セラミックス / 薄膜 / 高粘度流体 / 粒子配向 / セラミックス薄膜 / 流動解析 / 誘電膜 / スピンコーター |
Outline of Research at the Start |
本研究で取り扱う遊星式スピンコータ技術は,従来のスピンコータに遊星機構による自転公転運動を組み合わせた画期的な薄膜製造技術であり,技術的に困難であった高粘度材料を用いた均一薄膜成形を実現可能な技術である. 本研究では遊星式スピンコータを用いた高粘度粒子分散液(スラリー)材料の塗膜制御において,基板上の材料流動解析による材料挙動の把握により,高度な塗膜制御技術の開発を目指す.また,開発した塗膜制御技術により,大面積の均質無機材料薄膜の実現および配向制御による偏向膜製造を目指す.最終的には大面積無機ELの製造を行う.
|
Outline of Final Research Achievements |
In this study, a planetary spin-coating method was used to form a thin film, which successfully reduced uneven film thickness after film formation and controlled orientation using plate-like particles, which had been a problem in conventional spin-coating. In conventional spin-coating, the film is spread on the substrate by steady centrifugal force, which inevitably results in a raised centre and radial irregularities, but with the planetary method, both film irregularities can be eliminated by time variation of centrifugal force on the substrate. In addition, the orientation of the plate particles allows the film structure to be oriented in a uniform direction, which is expected for the thermal and electrical properties of the resulting films.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の学術的意義は、高速度カメラを用いた材料挙動の観察により、膜厚ムラの改善する仕組みをある程度把握できたところであると考えられる。これにより、当初のターゲットであった無機材料だけでなく、高分子材料などの多くの製膜の膜厚ムラの改善に効果的であることが期待できる。 また、社会的意義として、膜厚ムラ低減による性能の均質化とともに、板状粒子の配向による熱・電気的特性の向上が期待でき、将来的に電池材料や圧電材料などの各種素子の性能改善に寄与できると考えている。
|