Project/Area Number |
22K14614
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 30010:Crystal engineering-related
|
Research Institution | Osaka University |
Principal Investigator |
Ichikawa Shuhei 大阪大学, 大学院工学研究科, 准教授 (50803673)
|
Project Period (FY) |
2022-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2023: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2022: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
|
Keywords | 二光子光電子分光 / 表面再結合 / 窒化物半導体 / 時間分解 / 光電子分光 / フォトルミネッセンス / カソードルミネッセンス |
Outline of Research at the Start |
次世代の光・電子デバイス応用が期待されている窒化物半導体は、ヘテロ構造界面や試料表面における非輻射再結合過程が起因となり、素子の高効率化が妨げられている等の多くの課題を有している。本研究課題では、窒化物半導体光素子に対して、従来から行われてきた発光分光分析に加えて、励起状態に対する紫外光電子分光分析を融合した新奇評価手法を開拓することで、「半導体中に形成される電子状態と励起キャリア挙動の相関」を時空間分解的に明らかにする。これまで望まれながらも未実現であった、分野横断的な本手法を用いることで、次世代光半導体中のキャリアダイナミクス制御にむけた指針を得ることを目的とする。
|
Outline of Final Research Achievements |
In this research project, we directly evaluated surface carrier lifetime of InGaN, which has been extensively studied as a visible light-emitting devices, using two-photon photoemission spectroscopy. The surface carrier lifetime on the as-grown (0001) InGaN was estimated to be 3.8 ns, which was about two orders of magnitude longer than the lifetime on a GaAs(110) surface. It indicates that the surface recombination rate of InGaN surface is significantly slower. When Cs was adsorbed on the InGaN (0001) surface to suppress surface band bending, the surface carrier lifetime was drastically reduced to 48 ps. We found that the surface recombination of InGaN is extremely dependent on the amount of surface band bending, and control of the band bending is a key technology towards highly efficient micro-sized InGaN-based optical devices.
|
Academic Significance and Societal Importance of the Research Achievements |
超小型・高精細な「マイクロLEDディスプレイ」の実現にむけて、窒化物半導体光デバイスに期待が寄せられている。これまで、素子の微細化に伴って生じる非発光過程である、表面再結合過程の評価が十分でなかったが、表面敏感な二光子光電子分光法と従来の発光分光測定を組み合わせることにより、表面キャリア寿命の直接評価が可能であることを示した。異材料への適用も可能な評価手法の開発という観点から、学術的意義の高い結果が得られた。また、従来のGaAs系材料に比べると、表面再結合の影響が小さいことが示唆され、マイクロLED高効率化に向けた窒化物半導体開発の指針を得た点では、社会的な意義も高い成果となったと考える。
|