Project/Area Number |
22K15071
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 43040:Biophysics-related
|
Research Institution | The University of Tokyo |
Principal Investigator |
Arai Tatsuya 東京大学, 大学院新領域創成科学研究科, 助教 (90890145)
|
Project Period (FY) |
2022-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2023: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2022: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
|
Keywords | 非凍結細胞保存 / 氷結晶結合タンパク質 / 不凍機能 / 細胞膜 / 氷結晶 / 氷結晶タンパク質 |
Outline of Research at the Start |
氷結晶結合タンパク質(IBP)は低温環境に生息する様々な生物が生産する生体保護物質であり、氷結晶に結合してその成長を抑制する不凍機能と、細胞に結合してその細胞を低温障害から保護する細胞保護機能を持つことが知られている。本研究では、IBPの非凍結細胞保護機能の基本的情報から分子メカニズムまでを幅広く明らかにするために、細胞保存実験、蛍光観察実験、X線1分子動態計測実験などを用いて研究を行う。これにより、IBPの細胞保護機能と氷結晶成長抑制機能との相関関係を明らかにする。
|
Outline of Final Research Achievements |
This study aimed to elucidate at the molecular level how ice-binding proteins (IBPs) protect cells under non-freezing low temperatures. Various types of IBPs were synthesized, and it was revealed that all IBPs with significantly different structures could protect cells. Furthermore, introducing amino acid substitutions into the ice-binding sites resulted in significant changes in their cell protection effects, indicating the involvement of ice-binding sites in cell adhesion. Additionally, it was experimentally demonstrated that IBPs irreversibly absorb cells at low temperatures. These findings were summarized and published as a paper. It is believed that these results significantly contribute to understanding the mechanisms underlying cellular cold tolerance acquisition.
|
Academic Significance and Societal Importance of the Research Achievements |
細胞の保存技術の発展は、研究・医療分野において非常に重要な課題である。一般的に細胞は-80℃以下の超低温で冷凍保存される。しかし、血小板などの細胞や臓器は凍結保存ができないため、非凍結低温下で保存される。この際にも細胞は様々なダメージを受けるため、短期間しか保存することができないのが現状である。本研究において明らかになった、様々な構造を持つIBPが低温で細胞を保護可能であるという発見は、IBP添加するだけで様々な細胞の保存期間を延長できる可能性を示唆している。今後、この細胞保護効果の分子メカニズムを更に解明していくことで、細胞をより長期間保存する技術の発展に貢献する事ができると考えられる。
|