Project/Area Number |
22K15347
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 47060:Clinical pharmacy-related
|
Research Institution | Nihon University |
Principal Investigator |
|
Project Period (FY) |
2022-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2023: ¥130,000 (Direct Cost: ¥100,000、Indirect Cost: ¥30,000)
Fiscal Year 2022: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
|
Keywords | 薬物間相互作用 / 薬物性肝障害 / 機械学習 / 人工知能 / リアルワールドデータ / データマイニング / 薬剤性肝障害 / 解釈可能な機械学習 / 薬剤疫学 / 電子カルテ情報 / シグナル検出 |
Outline of Research at the Start |
薬物の代表的な副作用の1つとして肝臓機能の低下(薬物性肝障害)がある。薬物性肝障害はどのような薬物においても発生しうるが、そのリスクが比較的高い薬物も存在する。加えて、海外では薬物性肝障害のリスクが高い薬物を複数併用するとそのリスクが更に増加するという研究結果も示されている。したがって、日本人においてどの薬物の組み合わせがより薬物性肝障害のリスクを高めるかを検出することが可能になれば、薬物性肝障害を回避するための薬物療法の意思決定に役立てることが可能となる。そこで本研究では日本人患者の電子カルテ情報と機械学習を組み合わせることにより、薬物性肝障害のリスクがより高まる薬物の組み合わせを探索する。
|
Outline of Final Research Achievements |
The number of elderly patients receiving polypharmacy tends to increase by the aging of Japan's population. One of the most common adverse drug events is liver injury, and these patients receiving polypharmacy may be unintentionally prescribed drugs that increase the risk of liver injury. In this study, potential drug-drug interactions for increased risk of drug-induced liver injury were identified from electronic medical records using machine learning models. The machine learning models such as the logistic least absolute shrinkage and selection operator (LASSO) model and the gradient boosting decision tree model showed better predictive performance than multiple logistic regression model, one of the traditional statistical models, and suggested that the combination of diclofenac and famotidine significantly has been associated with an increased risk of drug-induced liver injury.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では電子カルテ情報を機械学習により解析することで, 薬物誘発性肝障害発症リスクに関連する潜在的な薬物間相互作用の検出を試みた. 機械学習アルゴリズムはOTC医薬品としても使用されているジクロフェナクやファモチジンの組み合わせが肝障害のリスクを高めることを示唆し, 医療機関に受診している患者のみならず, セルフメディケーションを実施している国民へも一定の注意を払う必要があると思われる. また従来の薬剤疫学的薬物間相互作用は線形回帰分析や不均衡分析により検出されてきたが, 機械学習を用いた検出はこれらの手法よりも高い汎化性を示しつつ相互作用の検出が可能な手法として今後活用が期待できる.
|