Project/Area Number |
22K16104
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 53020:Cardiology-related
|
Research Institution | Kobe University |
Principal Investigator |
|
Project Period (FY) |
2022-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2023: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2022: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
|
Keywords | 深層学習 / 学校心臓検診 / 小児心電図 / 学校検診 / 人工知能 / 心電図 / 小児心臓検診 |
Outline of Research at the Start |
現在学校健診、特に小児循環器疾患に対する健診は全国各地で実施されているが、小児循環器専門医は少数しかおらず、専門医でない医師が診断に関わっている。また、地方では医師そのものの数が少なく、医療格差は広がる傾向にある。そこで、本研究では小児の心電図に特化した診断補助システムを開発することで、医療格差の是正を図り、小児循環器疾患の早期発見・治療へ向けたAIプログラムの開発を目指す。
|
Outline of Final Research Achievements |
In this study, we developed an anomaly detection model as a deep learning model for screening purposes. The model employed a Variational Autoencoder (VAE) and was designed to accept 12-lead electrocardiograms. Based on pediatric screening data, the model was trained using only normal data, and its performance was evaluated on cases identified as anomalies in initial screenings, achieving an AUC-ROC of 0.996. The model was also validated on actual pediatric heart disease patients (hypertrophic cardiomyopathy and long QT syndrome), with AUC-ROC scores of 0.980 for hypertrophic cardiomyopathy and 0.932 for long QT syndrome.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の学術的意義は、深層学習を用いた異常検知モデルが小児心疾患の早期発見に有効であることを示した点にある。特に、稀な疾患である肥大型心筋症やQT延長症候群に対して高い検出性能を示したことは、今後の臨床応用の可能性を示している。また、社会的意義としては、学校検診での心疾患の早期発見・早期治療が可能となり、児童の健康管理の向上に寄与する点が挙げられる。
|