• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

医療者とAIの相互連携システム構築を目的とした解釈可能な機械学習予測モデルの開発

Research Project

Project/Area Number 22K17336
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 58010:Medical management and medical sociology-related
Research InstitutionKurume University

Principal Investigator

松本 晃太郎  久留米大学, 付置研究所, 講師 (60932217)

Project Period (FY) 2022-04-01 – 2025-03-31
Project Status Granted (Fiscal Year 2023)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2024: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2023: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2022: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Keywords機械学習の解釈性手法 / 機械学習予測モデル / SHAP / 電子クリニカルパス / 電子クリニカルパ ス
Outline of Research at the Start

機械学習予測モデルは予測性能が高い一方、どのような変数がどのように予測に寄与しているか解釈が困難であるというブラックボックス性が実装の障壁となっている。本研究では、機械学習予測モデルの解釈手法であるSHapley Additive exPlanationsを併用して、症例毎に予測因子の寄与度やその振舞い方を可視化し、医療従事者が解釈可能な予測モデルを開発することを目的とする。さらに、多くの病院で電子カルテに実装されつつある電子クリニカルパスに着目し、上記の解釈可能な機械学習予測モデルを電子クリニカルパスに実装することで、医療従事者との相互連携性を生み出す仕組みの構築を目指す。

Outline of Annual Research Achievements

予測モデル実装の対象施設と協議を行った結果、当初研究対象としていた脳卒中疾患を変更し、せん妄の予測に切り替えた。本邦では、2020年度診療報酬改定にて、せん妄ハイリスク患者ケア加算が新設され、すべての入院患者に対してせん妄のリスク因子の確認を行い、ハイリスク患者に対してせん妄対策を実施する体制が評価されるようになった。上記背景より、本研究との相互補完的関係にあると判断し、対象をせん妄予測とした。
【2022年度】
実装対象施設では既にせん妄発生を予測するためのリスクスコアを独自に開発していたが、対象施設の電子カルテデータを取得して確認したところ、偽陽性率と偽陰性率に改善の余地が認められた。そこで、取得可能なデータを用いて機械学習と解釈性手法による解析を実施し、リスクスコアの改訂を行った。さらに、せん妄のリスク症例への対策として、せん妄対策用の新しいクリニカルパスを導入した。この一連の流れを国際学会で発表しbest paper awardを受賞した(Matsumoto K, et al. Proceedings ofthe Asia Pacific Association for Medical Informatics 2022)。また、関連する内容が国際誌に受理された(Matsumoto K, et al. Appl. Sci. 2023, 13(3), 1564)。
【2023年度】
最適な予測アルゴリズムの選定を行うために、複数ある機械学習アルゴリズムの汎化性能の精査を行い、最適なアルゴリズム選定が行えた。この内容を国際誌に報告し、受理された(Matsumoto K, et al. JMIR Perioper Med. 2023;6:e50895)。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

当初予定していた対象疾患は変更したものの、現在の医療情勢や実装対象施設のニーズに合致した疾患を選定することができた。また、機械学習と解釈性手法を組み合わせたアプローチでリスクスコアの改訂を行い、予測モデルを電子カルテに実装する上で必要な知見が得られた。さらに、機械学習予測モデルが高い精度で予測可能であることが示され、用いるべき予測因子の同定もできたため。

Strategy for Future Research Activity

2024年度は、実装対象施設と電子カルテの実装方法について協議し、2023年度に同定した最適なアルゴリズムを実装することを目指す。

Report

(2 results)
  • 2023 Research-status Report
  • 2022 Research-status Report
  • Research Products

    (5 results)

All 2023 2022

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Open Access: 2 results) Presentation (2 results) (of which Int'l Joint Research: 2 results) Book (1 results)

  • [Journal Article] Delirium Prediction Using Machine Learning Interpretation Method and Its Incorporation into a Clinical Workflow2023

    • Author(s)
      Matsumoto Koutarou、Nohara Yasunobu、Sakaguchi Mikako、Takayama Yohei、Fukushige Shota、Soejima Hidehisa、Nakashima Naoki
    • Journal Title

      Applied Sciences

      Volume: 13 Issue: 3 Pages: 1564-1564

    • DOI

      10.3390/app13031564

    • Related Report
      2023 Research-status Report 2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Temporal Generalizability of Machine Learning Models for Predicting Postoperative Delirium Using Electronic Health Record Data: Model Development and Validation Study2023

    • Author(s)
      Koutarou Matsumoto, Yasunobu Nohara, Mikako Sakaguchi, Yohei Takayama, Syota Fukushige, Hidehisa Soejima, Naoki Nakashima, Masahiro Kamouchi
    • Journal Title

      JMIR Perioperative Medicine

      Volume: 6 Pages: e50895-e50895

    • DOI

      10.2196/50895

    • Related Report
      2023 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Development of Machine Learning Prediction Models for Self-Extubation After Delirium Using Emergency Department Data2023

    • Author(s)
      1.Koutarou Matsumoto, Yasunobu Nohara, Mikako Sakaguchi, Yohei Takayama, Takanori Yamashita, Hidehisa Soejima, Naoki Nakashima
    • Organizer
      MEDINFO2023
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research
  • [Presentation] Developing a Learning Health System for Delirium Using XAI2022

    • Author(s)
      Koutarou Matsumoto, Yasunobu Nohara, Mikako Sakaguchi, Yohei Takayama, Hidehisa Soejima, Naoki Nakashima
    • Organizer
      Asia Pacific Association for Medical Informatics 2022
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Book] 医療者とAIの相互連携システムの構築2022

    • Author(s)
      松本晃太郎, 野原 康伸, 副島 秀久
    • Total Pages
      2
    • Publisher
      Medical Science Digest
    • Related Report
      2022 Research-status Report

URL: 

Published: 2022-04-19   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi