Project/Area Number |
22K18696
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 13:Condensed matter physics and related fields
|
Research Institution | Institute of Physical and Chemical Research |
Principal Investigator |
Hanaguri Tetsuo 国立研究開発法人理化学研究所, 創発物性科学研究センター, チームリーダー (40251326)
|
Co-Investigator(Kenkyū-buntansha) |
町田 理 国立研究開発法人理化学研究所, 創発物性科学研究センター, 上級研究員 (60570695)
|
Project Period (FY) |
2022-06-30 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2023: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2022: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
|
Keywords | 走査型トンネル顕微鏡 / 分子線エピタキシー / 超伝導 / スピン計測 / 単層膜 / ひねり積層 / スピン液体 / スピン検出 / 単一原子操作 / 強相関電子系 |
Outline of Research at the Start |
本研究では、電子状態解析ツールである走査型トンネル顕微鏡が、単一原子操作にも用いることができる点に着目する。超伝導体やMott絶縁体など電子相関が本質的に重要な系の表面に、単一原子操作によって人工構造を作製し、非自明な「新物質」をボトムアップ的に実現する。規則配列した原子のスピンや電荷と、基板の多体効果が協奏・競合して生み出す電子状態を、走査型トンネル顕微鏡を用いた分光イメージングで解明し、新しい量子現象を探索する。
|
Outline of Final Research Achievements |
Our goal was to create artificial systems with emergent properties by manipulating atoms using a scanning tunneling microscope and utilizing strongly correlated materials as substrates. Using molecular beam epitaxy, we prepared monolayer 1T-TaSe2, a prototypical Mott insulator, and superconducting monolayer 1H-NbSe2 on graphene. We discovered that the superconducting monolayer 1H-NbSe2 stuck on graphene with a twist, and that the superconducting gap can be controlled through the twist angle. Additionally, we performed atom manipulation to modify a superconducting scanning tip by a magnetic atom and used it as a spin probe with unprecedented energy and spin resolutions.
|
Academic Significance and Societal Importance of the Research Achievements |
当初の目的であった、多数の原子を基板上に配置し、創発物性を探る研究までは期間内に到達できなかったが、基板材料の研究において、積層膜における捻じれ角による超伝導制御という興味深い成果を得た。様々な原子層物質にこの手法を適用することで、超伝導ツイストロニクスと呼ぶべき新しい展開が拓ける。また、原子操作の過程で実現した超伝導探針の磁性元素修飾は、100%のスピン偏極率と数10μeVのエネルギー分解能を持つスピン偏極走査型分光を可能にし、様々な応用が期待できる。
|