• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Coarse-grid LES modeling based on machine-learning-based super-resolution reconstruction of under-resolved LES flows

Research Project

Project/Area Number 22K18764
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 19:Fluid engineering, thermal engineering, and related fields
Research InstitutionTohoku University

Principal Investigator

Kawai Soshi  東北大学, 工学研究科, 教授 (40608816)

Project Period (FY) 2022-06-30 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2023: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Fiscal Year 2022: ¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Keywords数値流体力学 / 機械学習 / LES / 流体力学 / 乱流
Outline of Research at the Start

本研究では、高忠実な乱流シミュレーション、LES (Large-eddy simulation)の抜本的低コスト化を目指し、機械学習による画像生成技術を応用した流れの超解像再構成を活用し、再構成された流れの非解像成分が解像成分に与えるマルチスケール相互干渉効果を超粗格子LES方程式に導入する。これにより、これまで困難とされてきた遥かに粗い格子上でも高忠実な流れの予測を可能とするLES手法の確立に挑戦する。

Outline of Final Research Achievements

This study investigated a coarse-grid subgrid-scale (SGS) model that can maintain prediction accuracy as large-eddy simulation (LES) even when using a very coarse grid that intentionally does not resolve some high-energy turbulent components that should be resolved as LES. To establish the coarse-grid SGS model, we proposed a machine-learning-based pipeline model, which connects unsupervised and supervised learning, for super-resolution reconstruction of very coarse-grid under-resolved LES flowfields to provide effective SGS stresses for a coarse-grid LES. The proposed coarse-grid SGS model was validated through the apriori and a posteriori tests of turbulent channel flow.

Academic Significance and Societal Importance of the Research Achievements

高忠実に様々な乱流現象を再現可能とするLESは,近年は学術研究だけでなく,複雑な乱流現象を扱う必要がある産業界からの期待も非常に大きくなってきている.一方で,実際の設計開発におけるLESの活用は限定的なのもまた事実である.本研究がターゲットしているLESの飛躍的な低コスト化を目指した粗格子LESモデルの確立は,LESの利用を困難にしている高い計算コストの壁を取り除こうと試みるものであり,学術・応用の両面からLESの活用を大きく広げることに貢献することを目指して実施した.

Report

(3 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • Research Products

    (9 results)

All 2024 2023 2022

All Presentation (9 results) (of which Int'l Joint Research: 5 results)

  • [Presentation] Coarse-grid large-eddy simulation by unsupervised-learning-based sub-grid scale modeling2024

    • Author(s)
      Soju Mejima, Soshi Kawai
    • Organizer
      AIAA SciTech Forum 2024
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 粗い時間刻み幅を用いた非定常乱流解析に向けた機械学習モデルの構築2023

    • Author(s)
      松本康平, 前島颯樹, 河合宗司
    • Organizer
      第55回流体力学講演会/第41回航空宇宙数値シミュレーション技術シンポジウム
    • Related Report
      2023 Annual Research Report
  • [Presentation] 粗格子LESの実現へ向けた機械学習によるSGSモデリング2023

    • Author(s)
      前島颯樹, 河合宗司
    • Organizer
      日本流体力学年年会2023
    • Related Report
      2023 Annual Research Report
  • [Presentation] Machine-learning-based sub-grid scale modeling for coarse-grid large-eddy simulation2023

    • Author(s)
      Soju Mejima, Soshi Kawai
    • Organizer
      20th International Conference on Flow Dynamics
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Removing the log-layer mismatch in wall-modeled LES using near-wall erroneous flows via physics-informed neural network2023

    • Author(s)
      Soju Mejima, Soshi Kawai
    • Organizer
      The 76th Annual Meeting of the Division of Fluid Dynamics
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 大きな時間積分エラーを含む流れの機械学習再構成による高速乱流解析2023

    • Author(s)
      松本康平, 前島颯樹, 河合宗司
    • Organizer
      第37回数値流体力学シンポジウム
    • Related Report
      2023 Annual Research Report
  • [Presentation] Unsupervised machine-learning-based sub-grid scale modeling for coarse-grid LES2022

    • Author(s)
      Soju Maejima and Soshi Kawai
    • Organizer
      75th APS Annual Meeting of the Division of Fluid Dynamics (APS-DFD)
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] Unsupervised Machine-Learning for Super-Resolution and SGS Modeling of Very Coarse-Grid LES2022

    • Author(s)
      Soshi Kawai and Soju Maejima
    • Organizer
      2nd US-Japan Workshop on Data-Driven Fluid Dynamics
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] 教師なし学習CycleGANによる粗格子LESのSGSモデリング2022

    • Author(s)
      前島颯樹, 河合宗司
    • Organizer
      第36回数値流体力学シンポジウム
    • Related Report
      2022 Research-status Report

URL: 

Published: 2022-07-05   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi