準カシミヤカップリング誘発したフォノン熱輸送による革新的ナノスケール熱制御
Project/Area Number |
22K18773
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 19:Fluid engineering, thermal engineering, and related fields
|
Research Institution | Kyushu Institute of Technology |
Principal Investigator |
長山 暁子 九州工業大学, 大学院工学研究院, 教授 (60370029)
|
Project Period (FY) |
2022-06-30 – 2025-03-31
|
Project Status |
Granted (Fiscal Year 2022)
|
Budget Amount *help |
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2024: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2023: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2022: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | 準カシミヤカプリング / ナノギャップ / フォノン熱輸送 / 熱共振 / 分子動力学解析 |
Outline of Research at the Start |
数分子層程度の真空ナノギャップを挟む二つの固体が分子間相互作用力のみでフォノン熱輸送を実現し,準カシミヤ熱輸送機構による熱共振現象を発見した.本研究では,ナノギャップにおける準カシミヤカップリング誘発したフォノン熱輸送機構に基づいて,分子動力学解析および実験の両面より極小局所領域における革新的ナノスケール熱制御技術の原理原則を明示することを目指す.
|
Outline of Annual Research Achievements |
数分子層程度の真空ナノギャップを挟む二つの固体が分子間相互作用力のみでフォノン熱輸送を実現し,準カシミヤ熱輸送機構による熱共振現象を発見した(Chen & Nagayama, Int. J. Heat Mass Transf., 2021).新たに発見したフォノン熱輸送機構には,真空ナノギャップを挟む固体表面に準カシミヤカプリングによるフォノン輸送が誘発される.本研究では,ナノギャップにおける準カシミヤカップリング誘発したフォノン熱輸送機構に基づいて,分子動力学解析および実験の両面より極小局所領域における革新的ナノスケール熱制御技術の原理原則を明示することを目指す. 今年度は,独自の計算コードと分子動力学計算パッケージプログラムLAMMPSを用いて計算を実行した.まず,水分子を吸着したPtのナノギャップにおいて,界面固体分子間のみならず液体分子間における熱共振現象およびフォノン輸送を確認できた.非平衡状態において、ナノギャップを介して二つの固液界面間に通過する熱流束はギャップ距離の減少に伴い指数関数的に増加し,二つの液体吸着層の原子間に生じた熱共振が固体界面層の原子間の熱共振を共起させることを波形解析より解明した.次に,SiCのナノギャップにおける熱共振現象およびフォノン輸送が,界面におけるSiCの分子終端原子の配置(Si-C, C-Si, Si-Si, C-C)による影響を明らかにした.異種終端原子が熱共振現象およびフォノン輸送を抑制し,同種終端原子が熱共振現象およびフォノン輸送を促進できることを発見した. これらの結果を2022年度熱工学コンファレンスにて発表し,Royal Society of Chemistry社のPhysical Chemistry Chemical Physics誌およびNanoscale誌に掲載することになった.
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
スーパーコンピューティングシステムを用いた大規模分子動力学解析は,九州大学情報基盤研究センターの高性能演算サーバーを利用し,独自の計算コードと分子動力学計算パッケージプログラムLAMMPSを用いて計算を実行した.SiCのナノギャップにおける熱共振現象およびフォノン輸送について,界面におけるSiCの分子終端原子の配置との関連性を明らかにした.また,水分子を吸着したPtのナノギャップにおいても,熱共振現象およびフォノン輸送を確認できた.これらの計算結果を2022年度熱工学コンファレンスにて発表し,Royal Society of Chemistry社のPhysical Chemistry Chemical Physics誌およびNanoscale誌に掲載することになった.
|
Strategy for Future Research Activity |
引き続きスーパーコンピューティングシステムを用いた大規模分子動力学解析および原子間力顕微鏡による実験計測を実施する.分子動力学解析は,九州大学情報基盤研究センターの高性能演算サーバーに加えて大阪大学のスーパーコンピュータを利用する予定である.実験検証には,実現が難しい課題ではあるが,引き続き原子間力顕微鏡を活用して挑戦する.
|
Report
(1 results)
Research Products
(8 results)