Project/Area Number |
22K18807
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 21:Electrical and electronic engineering and related fields
|
Research Institution | Nagoya University |
Principal Investigator |
|
Project Period (FY) |
2022-06-30 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2023: ¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2022: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
|
Keywords | 水滴発電 / 太陽電池 / 雨滴発電 / 表面界面制御 / ナノ構造 |
Outline of Research at the Start |
本研究では、脱炭素社会の早期実現に向け、さらなる大規模導入が期待される太陽光発電と、地球に豊富に存在する水や雨からエネルギーを高効率に収集する雨滴発電デバイスを融合することを目指す。摩擦帯電膜のナノ構造化や表面・界面の化学状態制御により雨滴発電デバイスの高効率化指針を明確化するとともに、雨滴発電デバイスを実装した雨天時にも発電する太陽光発電モジュールの実現に挑戦する。
|
Outline of Final Research Achievements |
We aimed to clarify the guidelines for improving the efficiency of droplet-based electricity generators and to demonstrate the operation of solar modules capable of generating electricity even in the rain. We showed the effectiveness of increasing the surface area by processing the substrate surface, using high surface charge density amorphous fluororesin, composites with ferroelectric nanoparticles, and reducing parasitic capacitance by improving electrode shape to enhance the performance of droplet-based electricity generators. By covering the surface electrodes with a protective film, we demonstrated both long-term reliability and the ability to generate electricity even without direct contact between water droplets and electrodes. Furthermore, we successfully demonstrated the capability of generating electricity from both water droplets and sunlight by installing droplet-based electricity generators fabricated on a glass substrate on top of solar cells.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、水滴発電デバイスの高性能化研究を進め、得られたデバイスと太陽電池と融合することにより雨でも発電可能な太陽電池の動作を実証した。デバイスの動作原理の理解に基づき、材料選択、構造や形状パラメータの決定指針などを明確化したに学術的意義がある。また、雨でも発電できる太陽電池が実現できれば、天候の影響を緩和して電力を供給することができるため、新たな市場開拓や再生可能エネルギーの利用拡大に貢献できる。これは、地球温暖化や環境汚染などの問題に対処するための重要な一歩といえ、その社会的意義は大きい。
|