Project/Area Number |
22K18811
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 21:Electrical and electronic engineering and related fields
|
Research Institution | Kyushu University |
Principal Investigator |
|
Project Period (FY) |
2022-06-30 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2023: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2022: ¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
|
Keywords | 蓄冷システム / 超伝導 / モビリティ / 固体窒素 / 蓄冷 |
Outline of Research at the Start |
超伝導モータは、従来のモータでは為し得ないほどの出力密度を達成し得るため、大型旅客機の電動化の唯一解とされるほどの期待を受けているが、それにかかる冷却システムの重量は、その成否を左右する重大な課題となっている。そこで本研究では、比熱の高い固体窒素と熱伝達流体の組み合わせた高機能蓄冷材を開発し、超伝導モータへの適用可能性を検証することで、冷却システムの搭載を必要としない夢の超伝導モビリティの実現可能性を提示する。
|
Outline of Final Research Achievements |
The purpose of this research is to develop a cooling storage system to realize superconducting mobility without the need for an on-board cooling system. Superconductive motors are expected to be the only solution for the electrification of large passenger aircraft because they can achieve a high-power density that cannot be achieved with conventional motors. On the other hand, it is essential to keep the superconducting part at a low temperature in the operation of a superconducting motor, and the weight of the cooling system is a critical issue that determines the success or failure of the motor. In this study, we developed a high-performance cold storage material that combines solid nitrogen with a heat-transfer fluid to demonstrate its applicability to superconducting motors, thereby presenting the feasibility of superconducting mobility that does not require an on-board cooling system.
|
Academic Significance and Societal Importance of the Research Achievements |
超伝導機器の開発においては、冷却技術が不可欠であるにもかかわらず、はじめに超伝導機器の諸元が定まり、その上で要求される冷却システムが設計されるため、その結果、トータルシステムとしての実現可能性に疑問が投げかけられることがしばしばある。本研究は、この負のスパイラルを断ち切り、超伝導機器のスタンドアロン運転の可能性を拓く革新的な研究である。具体的には、微量のガスを添加することによって比熱の高い固体窒素の蓄冷性能を余すところなく活用できることを明らかとし、超伝導モビリティの冷却にかかる重量を1/10に低減できることを示し、今後のCO2削減に不可欠となる高効率モビリティの実現の可能性を示した。
|