Project/Area Number |
22K18881
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 26:Materials engineering and related fields
|
Research Institution | Tokyo Institute of Technology |
Principal Investigator |
Katase Takayoshi 東京工業大学, 元素戦略MDX研究センター, 准教授 (90648388)
|
Project Period (FY) |
2022-06-30 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2023: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2022: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
|
Keywords | 熱伝導率 / 薄膜トランジスタ / 構造転移 |
Outline of Research at the Start |
膨大な未利用熱の効果的な削減・有効利用に向けて、外場により、固体の熱伝導率を大きく制御可能な熱スイッチ素子が求められている。本研究では、応募者が実現した、結晶構造の次元性を人工的に変化させる「2次元(2D)-3次元(3D)構造転移材料」を用いて、熱伝導率を大きく制御可能な熱スイッチ素子の開発に挑戦する。
|
Outline of Final Research Achievements |
Electric-field induced transition between two-dimensional (2D) and three-dimensional (3D) structures was demonstrated in epitaxial thin films of nonequilibrium (Pb1-xSnx)Se solid solution to develop thermal conductivity switching devices with giant electrical conductivity and lattice thermal conductivity change. Giant modulation in electronic conductivity at 7 orders of magnitude was demonstrated in (Pb1-xSnx)Se films by reversible 2D-3D structural transition, where the transition temperature was modulated by changing x values. In addition, electric double-layer transistors using (Pb1-xSnx)Se thin films as active layers were fabricated, and the 2D-3D structural transition was controlled by the application of negative gate bias, resulting in a reversible control of the sheet resistance by more than two orders of magnitude.
|
Academic Significance and Societal Importance of the Research Achievements |
膨大な未利用熱の効果的な削減・有効利用に向けて、外場により固体の熱伝導率を大きく制御可能なデバイスの開発が求められている。本研究では、当研究グループ独自の「2次元(2D)-3次元(3D)構造転移材料(Pb1-xSnx)Se」のエピタキシャル薄膜を用いて、電場印加による結晶構造の次元性と電気抵抗の可逆制御が可能なデバイスを実証した。開発したデバイスを応用することで熱伝導率を大きく制御可能な熱スイッチ素子の実現に繋がると期待できる。
|