Project/Area Number |
22K18969
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 29:Applied condensed matter physics and related fields
|
Research Institution | Shizuoka University |
Principal Investigator |
Iwata Futoshi 静岡大学, 電子工学研究所, 教授 (30262794)
|
Co-Investigator(Kenkyū-buntansha) |
河崎 秀陽 浜松医科大学, 光尖端医学教育研究センター, 准教授 (90397381)
|
Project Period (FY) |
2022-06-30 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2023: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2022: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
|
Keywords | 走査型イオン伝導顕微鏡 / ナノバイオ / 表面形状計測 / 動的観察 / 高速イメージング / 表面帯電分布 |
Outline of Research at the Start |
液中環境での材料や生体試料表面といった固液界面の活性場において,刻々と変化しながら発現する現象を動的に顕微観察することは,そこで生じる様々な機能・現象解明に極めて有効である.本研究では活性な固体界面形状と電荷分布をナノスケールで動的観察可能なイメージング法を開発する.走査型イオン伝導顕微鏡をベースに新奇電流検出法により実現する.複雑に変化する界面形態や電荷分布を動的に可視化・解析する取り組みであり,表面科学の学術的意義のみでなく,医療・創薬分野から工業分野まで幅広い波及効果と応用展開が期待できる.
|
Outline of Final Research Achievements |
Dynamic observation of active interfaces of solid materials and biological cell membranes in a liquid environment is extremely useful to elucidate the phenomena occurring there. The purpose of this study is to develop a high-speed imaging method for dynamic observation of sample surfaces in liquid environments with nanoscale resolution. Based on Scanning Ion Conductance Microscopy (SICM), a novel current detection method using a double-barrel nano-pipette with two channels to cancel ion current of capacitive components was developed to realize high-speed current detection. Biological samples were measured as a demonstration of the developed system. Dynamic observation of the behavior of microvilli and protrusions actively moving on the cell surface while undergoing complex morphological changes was realized.
|
Academic Significance and Societal Importance of the Research Achievements |
液中環境において細胞や組織などの生体膜表面は,細菌やウイルス感染,分子やイオンの脱吸着,タンパク質や生体分子の発現の活性場である.また,材料表面においては結晶成長や腐食,触媒反応といった物理・化学反応が盛んに生じている.近年,その解明に向けての研究が精力的に進められている.本研究は複雑に変化する界面形態をナノスケールで高速イメージングすることで,動的に可視化することを実現した.本手法は,表面科学における学術的意義のみでなく,生細胞における菌の感染メカニズム,組織の動的解析といった医療分野から二次電池・キャパシタなどのデバイス開発といった工業的分野まで幅広い分野への応用展開が期待できる.
|