Project/Area Number |
22K18970
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 29:Applied condensed matter physics and related fields
|
Research Institution | Osaka University |
Principal Investigator |
Li Yanjun 大阪大学, 大学院工学研究科, 准教授 (50379137)
|
Project Period (FY) |
2022-06-30 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2023: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2022: ¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
|
Keywords | 光誘起力顕微鏡 |
Outline of Research at the Start |
本研究の目的は、物質表面の構造と振動準位を原子分解能で観察可能な次世代の近接場ラマン光学顕微鏡を開発すると共に、その原子分解能観察の条件を解明することにある。本研究により、従来の常識を覆す新しい物理現象や機能を発見できる。また、得られる知見は、触媒表面での課題や燃料電池の電極表面での課題、高感度ガスセンサーなどの課題を解決するだけでなく、さらに性能を向上させるための指針を与えてくれる。したがって、本研究は、将来の環境・エネルギー分野の発展を支える基礎研究として必要不可欠であり、持続可能な社会の発展に貢献する研究分野の推進を可能とする。
|
Outline of Final Research Achievements |
(1) In order to excite Raman light efficiently, an enhanced electric field by gap mode is used. Copper phthalocyanine and pentacene molecules adsorbed on silver (Ag) surfaces were used as samples. A gold (Au)-coated tip was used as a metal probe. (2) We experimentally investigated the conditions under which the Raman force can be measured with the highest sensitivity. The Raman force was derived from the tip-to-sample distance dependence of the modulation component of the cantilever frequency shift. (3) We attempted to observe the Raman light distribution of copper phthalocyanine molecules with high resolution, but the signal-to-noise ratio was not sufficient and a clear Raman light signal was not obtained. Further study is needed on how to improve the signal-to-noise ratio further.
|
Academic Significance and Societal Importance of the Research Achievements |
原子レベルでの物質と光との相互作用に関する科学は、学術的研究課題の宝庫である。本研究の成功により、従来の常識を覆す新しい物理現象や機能を発見できる。このような発見は、新しい概念に基づく新材料や新デバイスの創製につながると期待される。また、このような革新的な研究手法の出現は、光物性研究の仕方を質的に変える可能性がある。本研究は、21世紀の環境・エネルギー分野の発展を支える基礎的研究として必要不可欠であり、持続可能な社会の発展に貢献する触媒研究や材料開発研究の飛躍的な推進を可能とする。
|