Project/Area Number |
22K18981
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 30:Applied physics and engineering and related fields
|
Research Institution | Chiba University |
Principal Investigator |
|
Project Period (FY) |
2022-06-30 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2023: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2022: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
|
Keywords | 光渦 / 軌道角運動量 / 光重合 / キラリティー / 光物性物理学 / キラル秩序 / 特異点光学 / 光マニピュレーション |
Outline of Research at the Start |
研究代表者は「光渦を物質(金属・半導体・有機薄膜など)に照射すると物質表面でキラルな質量移動が起こり、物質表面にサブミクロンスケールの螺旋構造ができること」を発見した。現象の発見からすでに10年近くの年月が経過し、この間、国内外(日本、ロシア、カナダ、スペインなど)で数多くの研究がなされてきた。しかしながら、光渦による螺旋構造に関する事例のすべてが、未だ物質表面あるいは物質同士の界面に限定されている。 本研究は、「なぜ物質内部に螺旋構造ができないのだろうか?」という学術的な問いを解明を解明し、3次元螺旋構造、すなわち、メタ螺旋構造を光渦照射だけで創成することに挑戦する。
|
Outline of Final Research Achievements |
An optical vortex induced self-written helical microfiber with a micron-scale diameter and a millimeter-scale length via OAM transfer effects has been successfully demonstrated. Such self-written helical fiber enables potentially the delivery or mode conversion of optical vortices as an eigen mode. A homemade continuous-wave green laser was used, and its output was converted into a first-order Bessel beam by a spiral phase plate and an Axicon lens. The generated Bessel beam was focused on a cell containing a cure resin by an objective lens. The rotation of the transmitted light occurred, manifesting the self-trapping effects of the optical vortex with the formation of a fiber owing to OAM transfer effects. Interestingly, the vortex mode with an annular spatial form was generated from the fabricated fiber by the injection of Gaussian beam, manifesting that the fabricated helical fiber acts as a waveguide for mode coupling between the Gaussian and the vortex modes.
|
Academic Significance and Societal Importance of the Research Achievements |
キラリティーは物質科学における普遍的テーマである。光渦は、螺旋波面に由来する軌道角運動量と螺旋波面の向きで決まるキラリティーを持つ光である。光渦を物質に照射すると軌道角運動量が作用してキラルな量移動が起こり、物質表面にサブミクロンスケールの螺旋構造ができることを研究代表者は世界で初めて発見した。しかしながら、これまでの螺旋構造に関する事例のすべては、物質表面に限定されていた。 物質内部の構造を力学的に捩じって螺旋構造を形成した本研究成果は、人工生体シ組織シミュレーター、光を非損失で一方向伝播させることができるトポロジカル光デバイスなど、メタ螺旋構造を有する素子として展開が期待できる。
|