Project/Area Number |
22K19084
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 36:Inorganic materials chemistry, energy-related chemistry, and related fields
|
Research Institution | Kyoto University |
Principal Investigator |
Tomita Osamu 京都大学, 工学研究科, 助教 (40801303)
|
Project Period (FY) |
2022-06-30 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2023: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2022: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
|
Keywords | 光電気化学 / 光触媒 / 光エネルギー / アニオン交換 / オキシハライド / アニオン |
Outline of Research at the Start |
本申請課題は,半導体材料の新しい化学的な特性や機能を,p-n変換およびp-n接合形成によって生み出し,新しい光電変換系の構築に向けてこの機能の展開を図る.Sillen型層状酸ハロゲン化物群において,特異な挙動をもたらすアニオン交換相の組成,および,構造因子解明を進める.また,光キャリアの利用検証として,有望な元素からなる材料を選定して,光キャリアによる光変換系構築を図る.新しい材料開発法に向けた潜在性を有しているといえ,探索的な研究を遂行することにより,新しい材料合成法および利用法を示す.
|
Outline of Final Research Achievements |
Controlling carrier density of semiconductors has been known as one of the effective ways to change the diffusion lengths of photoexcited carriers and thereby improve their photocatalytic activity. In the present study, particle of BiOBr doped with varied amounts of Cl were prepared in order to investigate the relation between the total amount of halide anions and the donor density in the products. Although the photoelectrode of undoped BiOBr showed a photoanodic current, those consisting of Cl-doped BiOBr showed both the photoanodic and photocathodic current, implying that the Cl-doping successfully reduced the donor density of original n-type BiOBr. The BiOBr doped with a suitable amount of Cl exhibited superior activity for O2 evolution (half reaction) compared to BiOBr under ultraviolet and visible light irradiation. The improved activity suggested the potential of this carrier density control strategy for improving the efficiency of photocatalysis on these oxyhalide materials.
|
Academic Significance and Societal Importance of the Research Achievements |
半導体光触媒および光電極の開発が盛んに進められており,光キャリアの有効利用に向けて,半導体光触媒材料の長波長化,表面反応促進のための表面修飾などの検討がなされている.本課題では,層状酸ハロゲン化物を例に,光電極性能,光触媒活性に与える,イオン半径の小さなハロゲンの合成時の過剰添加効果を検討した.アニオン交換あるいはアニオン補填によるドナー密度制御を可能とし,これに加えて,本手法が懸濁系光触媒活性の向上にも有効な戦略の1つになることを示した.このことは,新しい特性や機能の発現させるための1つの方法に繋がるといえ,物性制御法の1つを示したことに意義があるといえる.
|