Project/Area Number |
22K19109
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 37:Biomolecular chemistry and related fields
|
Research Institution | Nagoya Institute of Technology |
Principal Investigator |
Tsukiji Shinya 名古屋工業大学, 工学(系)研究科(研究院), 教授 (40359659)
|
Project Period (FY) |
2022-06-30 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2023: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2022: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
|
Keywords | ケモジェネティクス / in vivo / 局在スイッチ / 承認薬 / 局在性リガンド / 治療薬 / 機能性化合物 |
Outline of Research at the Start |
マウスなどの動物の体の中で細胞機能を操作する技術は、in vivoの生命現象や疾患のメカニズム解明のための強力な基盤技術となる。本研究では、一種類の化合物を用いて、さまざまな細胞内シグナルや細胞活性を動物個体内で自在に誘導・制御することのできる革新的なin vivo細胞操作技術を確立する。
|
Outline of Final Research Achievements |
In this work, we aimed to develop new chemogenetic methods for controlling cell function in vivo. We pursued two approaches. In the first approach, we focused on engineering a drug-responsive localization-switching domain, which is localized in the cytoplasm in the absence of a drug but translocates to the inner leaflet of the plasma membrane in the presence of a drug. This project is still ongoing for further optimization. In the second approach, we applied our original "self-localizing ligand-induced protein translocation (SLIPT)" technique in vivo. We successfully developed a novel self-localizing ligand and protein tag pair that can be used to induce the plasma membrane recruitment of tag-fused proteins in cells within living mice. This tool may provide a powerful new platform for in vivo cell manipulation.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究は、生きた動物の体の中で細胞機能や細胞内情報伝達を自在に操作することを可能にする汎用的な化学遺伝学技術を開発するものである。このような技術は、動物個体内で進行する生命現象、細胞内/細胞間情報伝達、疾患などの制御機構を解明するための強力なin vivo生命研究ツールとなるばかりでなく、CAR-T細胞に代表されるような次世代医療や細胞医薬に資する革新的なin vivo細胞操作テクノロジーとしての展開が期待される。
|