• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Challenge to Sigma-2P complete problems: moving up in the polynomial hierarchy

Research Project

Project/Area Number 22K19813
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 61:Human informatics and related fields
Research InstitutionKyushu University

Principal Investigator

Yokoo Makoto  九州大学, システム情報科学研究院, 教授 (20380678)

Project Period (FY) 2022-06-30 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥6,240,000 (Direct Cost: ¥4,800,000、Indirect Cost: ¥1,440,000)
Fiscal Year 2023: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2022: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
KeywordsΣ2P完全問題 / MaxSAT / robust solution / 組合せ最適化 / 近似解法 / ゲーム理論 / マルチエージェントシステム
Outline of Research at the Start

人工知能の研究において,NP完全と呼ばれる,指数的な可能性の中から望ましい性質を満たす解を試行錯誤的に探索する問題が中心的な役割を果たしている.理論的には効率的な厳密解法は存在しないことが予想されているが,いくつかの問題 (充足可能性問題, 混合整数計画問題等) で大規模な応用事例に対応可能な効率的なプログラムが得られている.本研究では,Σ2P完全と呼ばれる問題の近似アルゴリズムを開発することを目標とする.直感的には,Σ2P完全問題を解くためには指数的な個数のNP完全問題を解くことが必要とされ,この問題はNP完全問題よりも格段に難しい問題となる.

Outline of Final Research Achievements

In this project, we examine algorithms for solving sigma-2P-complete problems, which belongs to a class of problems that is one step higher than NP-complete problems in polynomial hierarchy. More specifically, we prove that a problem for minimizing the effect of adversarial attacks, when an adversary can modify a part of solutions of a weighted partial Max satisfiability problem, is sigma-2P-complete. Furthermore, we develop an exact algorithm for solving it. This result is published in Pacific Rim International Conference on Artificial Intelligence (PRICAI-2022) as a full paper. Furthermore, we present this work at Symposium on Multi Agent Systems for Harmonization 2022 Winter Symposium (SMASH22), which is awarded as one of best papers.

Academic Significance and Societal Importance of the Research Achievements

特筆すべき点として,Σ2P完全と呼ばれる,多項式階層において困難さのレベルがNP完全問題よりも一段階上のクラスの問題に関して,近年発展が著しいSATソルバーと呼ばれる効率的な重み付き部分最大SAT問題を解くプログラムをサブルーチンとして用いて,現実的な時間内で最適解を得るアルゴリズムを開発したことがある.このような問題は,敵対者が存在する状況で,敵対者の妨害に対して頑健な解を求めるということに対応し,敵対者が存在するクリーク分割問題等,数多くの応用事例に適用可能である.

Report

(3 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • Research Products

    (5 results)

All 2023 2022 Other

All Int'l Joint Research (2 results) Journal Article (2 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 2 results,  Open Access: 1 results) Presentation (1 results)

  • [Int'l Joint Research] アムステルダム大学(オランダ)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Ecole Polytechnique Feminine (EPF)(フランス)

    • Related Report
      2022 Research-status Report
  • [Journal Article] Strategyproof Allocation Mechanisms with Endowments and M-convex Distributional Constraints2023

    • Author(s)
      Takamasa Suzuki, Akihisa Tamura, Kentaro Yahiro, Makoto Yokoo, Yuzhe Zhang
    • Journal Title

      Artificial Intelligence

      Volume: 315 Pages: 103825-103825

    • DOI

      10.1016/j.artint.2022.103825

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Robust Weighted Partial Maximum Satisfiability Problem: Challenge to Σ2P-Complete Problem2022

    • Author(s)
      Sugahara Tomoya、Yamashita Kaito、Barrot Nathanael、Koshimura Miyuki、Yokoo Makoto
    • Journal Title

      Pacific Rim International Conference on Artificial Intelligence

      Volume: 1 Pages: 17-31

    • DOI

      10.1007/978-3-031-20862-1_2

    • ISBN
      9783031208614, 9783031208621
    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] 敵対者が存在する重み付き MaxSAT の定式化と厳密アルゴリズムの提案2022

    • Author(s)
      山下魁人,菅原知也,越村三幸,横尾真
    • Organizer
      Symposium on Multi Agent Systems for Harmonization 2022 Winter Symposium (SMASH22)
    • Related Report
      2022 Research-status Report

URL: 

Published: 2022-07-05   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi