• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Estimating and Analyzing Daily Sleep Quality Using Deep Learning with Multiple Factors

Research Project

Project/Area Number 22K19832
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 62:Applied informatics and related fields
Research InstitutionOsaka University

Principal Investigator

Fukui Ken-ichi  大阪大学, 産業科学研究所, 准教授 (80418772)

Co-Investigator(Kenkyū-buntansha) 加藤 隆史  大阪大学, 大学院歯学研究科, 教授 (50367520)
Project Period (FY) 2022-06-30 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2023: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Fiscal Year 2022: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Keywords睡眠 / 音響 / 深層学習 / ドメイン適応 / マルチモーダル / 睡眠音 / 要因分析 / 睡眠の質評価 / 睡眠の質 / 生体活動 / 個人差・環境差
Outline of Research at the Start

本研究で着目する「睡眠中の音響」には睡眠を特徴付ける様々な生体活動(いびき,歯ぎしり,体動等)や周囲の環境音など多様な情報が含まれており,従来のウェアラブルデバイスでは困難であった個人特有の睡眠評価が可能になる.本研究では深層学習に基づいて,睡眠音の特徴表現と共に,生体活動のパターンを獲得した上で,室温や湿度,体調,日中の活動量など複数の要因を同時に考慮し,かつ,それら要因の変化が睡眠の質に与える影響を分析可能なモデルを開発する.そして,生理学的な睡眠評価との整合性を担保しつつ,適切な日常の睡眠の質評価を与えることを目指す.

Outline of Final Research Achievements

In this study, we developed a deep learning model to estimate the quality of daily sleep based on sounds, enabling non-contact and easy measurement. Over a continuous four-week period, we collected data on sleep sounds, heart rate, activity levels during the day, bedroom temperature, humidity, and light levels, and administered surveys about sleep quality, health, and the environment before bed and after waking. 1. 56 additional subjects in their 40s to 60s were recruited, bringing the total to 385 participants. 2. To mitigate individual and environmental differences in sound features, we developed a sleep evaluation method based on domain adaptation and verified its effectiveness using our home database. 3. We proposed two types of deep learning models capable of sleep evaluation, incorporating physical and environmental factors in addition to sleep sounds, revealing the main factors affecting sleep for different age groups.

Academic Significance and Societal Importance of the Research Achievements

本研究は非接触かつ簡便に計測可能な音響に基づく新しい睡眠評価法を提案し,日常の睡眠評価の高精度化に貢献した.本研究により開発した深層学習に基づく睡眠評価モデルは,睡眠音特徴の個人差や環境差に対応し広範囲に利用可能であり,また個人毎に身体・環境要因などと統合して睡眠影響因子を特定が可能である.これにより,将来的に個別化された具体的な睡眠改善策の提供が可能となり,日常の睡眠の質改善により公衆衛生の向上,メンタルヘルス問題などの予防に貢献するものと考える.

Report

(3 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • Research Products

    (10 results)

All 2023 2022

All Journal Article (3 results) (of which Peer Reviewed: 2 results,  Open Access: 1 results) Presentation (7 results) (of which Int'l Joint Research: 2 results,  Invited: 4 results)

  • [Journal Article] Sound-based sleep assessment with controllable subject-dependent embedding using Variational Domain Adversarial Neural Network2023

    • Author(s)
      Ken-ichi Fukui, Shunya Ishimaru, Takafumi Kato, and Masayuki Numao
    • Journal Title

      International Journal of Data Science and Analytics

      Volume: -

    • DOI

      10.1007/s41060-023-00407-7

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Gated Variable Selection Neural Network for Multimodal Sleep Quality Assessment2023

    • Author(s)
      Yue Chen, Takashi Morita, Tsukasa Kimura, Takafumi Kato, Masayuki Numao, and Ken-ichi Fukui
    • Journal Title

      Proc. 32nd International Conference on Artificial Neural Networks (ICANN2023)

      Volume: -

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] AIによる音響・振動データからの知識発見と予測2023

    • Author(s)
      福井健一
    • Journal Title

      生産と技術

      Volume: 75 Pages: 26-31

    • Related Report
      2022 Research-status Report
  • [Presentation] Gated Variable Selection Neural Network for Multimodal Sleep Quality Assessment2023

    • Author(s)
      Yue Chen, Takashi Morita, Tsukasa Kimura, Takafumi Kato, Masayuki Numao, and Ken-ichi Fukui
    • Organizer
      32nd International Conference on Artificial Neural Networks (ICANN2023)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Gated Variable Selection Neural Network for Multimodal Sleep Quality Assessment2023

    • Author(s)
      Yue Chen, Takashi Morita, Tsukasa Kimura, Takafumi Kato, Masayuki Numao, and Ken-ichi Fukui
    • Organizer
      2023年度人工知能学会全国大会(第37回)
    • Related Report
      2023 Annual Research Report
  • [Presentation] Sound-based sleep quality prediction considering multiple factors2023

    • Author(s)
      Shintaro Tamai, Yue Chen, Takashi Morita, Tsukasa Kimura, Masayuki Numao, and Ken-ichi Fukui
    • Organizer
      The 26th SANKEN International Symposium
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] 機械学習による音響に基づく日常の睡眠評価2022

    • Author(s)
      福井健一
    • Organizer
      パナソニックDAY2.0 ライフサイエンス・セミナー
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] AIによる音響・振動データからの知識発見と予測2022

    • Author(s)
      福井健一
    • Organizer
      生産技術振興協会 ハイテク推進セミナー
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 人工知能による睡眠個性可視化と良否判別2022

    • Author(s)
      福井健一
    • Organizer
      日本顎口腔機能学会 第69回学術大会
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] AIによる睡眠の視覚化と良否判別2022

    • Author(s)
      福井健一
    • Organizer
      第30回日本睡眠環境学会学術大会
    • Related Report
      2022 Research-status Report
    • Invited

URL: 

Published: 2022-07-05   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi