Project/Area Number |
22K19908
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 90:Biomedical engineering and related fields
|
Research Institution | Hokkaido University |
Principal Investigator |
Ijiro Kuniharu 北海道大学, 電子科学研究所, 教授 (90221762)
|
Project Period (FY) |
2022-06-30 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥6,240,000 (Direct Cost: ¥4,800,000、Indirect Cost: ¥1,440,000)
Fiscal Year 2023: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2022: ¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
|
Keywords | 金ナノ粒子 / ヤヌス型ナノ粒子 / 自己集合 / 光免疫療法 / 近赤外 / 光熱変換 / プラズモン / 近赤外光 / 光熱効果 / ガン細胞 |
Outline of Research at the Start |
ガン治療法として、光免疫療法は「第5のがん治療」として注目されているが、治療に用い る波長 690 nm の光では組織の透過度が高くないので、光ファイバーを腫瘍の適切な部位 に穿刺して光照射しないと、十分な治療効果を期待することはできない。そこで、本研究 では透過深度が高い波長1,000 nm を超える近赤外光(OTN-近赤外光)でガン細胞を破壊す ることを可能にするヤヌス型金ナノロッドの開発をめざす。これにより無侵襲な(体の中に光ファイバーを入れない)ガン光治療の開発をめざす。
|
Outline of Final Research Achievements |
In this research, we aimed to develop a photothermal therapeutic system to disrupt cancer cell membranes with gold nanoparticles (AuNPs) that absorb near-infrared (NIR) light. The AuNPs were modified with temperature-responsive ligands to express surfactant effect that destroys cell membranes via photothermal conversion. Firstly, a disc (AuND) was modified with a weakly hydrophobic ligand to provide temperature responsivity. As a result, it showed assembly/disassembly according to heating/cooling with good dispersibility. Next, a rod (AuNR) was mixed with cancer cells in a culture medium and irradiated with NIR light to demonstrate cell membrane disruption. As a result, cell viability was significantly reduced with NIR light irradiation. These results revealed that the photothermal conversion of AuNPs enables to induce the death of cancer cells with NIR light efficiently.
|
Academic Significance and Societal Importance of the Research Achievements |
近年、「第5のガン治療」として注目されている光免疫療法は、皮膚を透過する近赤外(NIR)光で色素を反応させ、ガン細胞を特異的に死滅させることができるが、細胞膜の破壊効率、色素分子の吸収波長、内在的な毒性の点で改善の余地がある。一方で、本研究により、金ナノ粒子の形状を制御することで、より生体透過性が高いNIR領域にプラズモン吸収波長を設定できることが明らかとなった。さらに、金ナノ粒子の光熱変換能により、NIR光でガン細胞の死滅を誘起できることが分かった。本研究で得られた成果により、標的細胞の破壊効率が高く、毒性を低減した新たな光免疫療法への応用展開が期待できる。
|