• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Mathematical analysis on solitary waves for nonlinear dispersive equations

Research Project

Project/Area Number 22K20337
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0201:Algebra, geometry, analysis, applied mathematics,and related fields
Research InstitutionWaseda University

Principal Investigator

Hayashi Masayuki  早稲田大学, 理工学術院総合研究所(理工学研究所), その他(招聘研究員) (60967850)

Project Period (FY) 2022-08-31 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2023: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords非線形分散型方程式 / 非線形シュレディンガー方程式 / 孤立波 / 進行波 / 代数ソリトン / 不安定性 / コーシー問題 / エネルギー空間 / 初期値問題 / ソリトン / 定常解 / 変分法 / 進行波解 / 安定性
Outline of Research at the Start

非線形分散型方程式における孤立波を数学的に解析し,孤立波近傍の解の時間大域挙動を明らかにすることを目指す.特に,空間遠方で減衰が遅い孤立波(代数ソリトン)に焦点を当てて研究を進めていく.代数ソリトンは近年の研究で重要性が次第に認識されてきているが,空間遠方で指数的な減衰をもつ通常の孤立波と比べて解析に様々な困難をもたらし,安定性や不安定性といった基本的な問題を含めて未解決な問題が多い.本研究では,一般論の枠組みに入らない孤立波(代数ソリトンが典型例)の安定性/不安定性理論の構築,また不安定な孤立波近傍の大域ダイナミクスの解明を目指して解析手法を整備していく.

Outline of Final Research Achievements

We have mainly studied nonlinear dispersive equations which possess algebraically decaying solitons (algebraic solitons), and established stability/instability theory of solitary waves, constructed traveling wave solutions by variational methods, and constructed solutions in energy spaces and higher energy spaces. The research into mathematical models that can systematically handle algebraic solitons has revealed a deep connection between nonlinear analysis and linear operator theory, and the research into physical models has enabled us to discover new mathematical structures that had not been captured in previous literature.

Academic Significance and Societal Importance of the Research Achievements

代数ソリトンの安定性・不安定性に関する成果は、新たな数学的知見を与えているだけでなく、代数ソリトンにまつわる数理の豊穣さを示唆しており、今後の更なる理論発展が期待される。物理モデルに対する進行波解の構成やコーシー問題の可解性の成果は、より複雑な解の大域挙動の解明や新たな物理現象の発見に繋がる可能性を秘めており、こちらも今後の発展が期待できる。

Report

(3 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • Research Products

    (17 results)

All 2024 2023 2022 Other

All Int'l Joint Research (2 results) Journal Article (3 results) (of which Peer Reviewed: 3 results) Presentation (12 results) (of which Int'l Joint Research: 6 results,  Invited: 10 results)

  • [Int'l Joint Research] Universita di Pisa(イタリア)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Universite de Rennes/CNRS(フランス)

    • Related Report
      2023 Annual Research Report
  • [Journal Article] Traveling waves for a nonlinear Schroedinger system with quadratic interaction2022

    • Author(s)
      Fukaya Noriyoshi、Hayashi Masayuki、Inui Takahisa
    • Journal Title

      Mathematische Annalen

      Volume: - Issue: 2 Pages: 1357-1378

    • DOI

      10.1007/s00208-022-02555-w

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Stability of Algebraic Solitons for Nonlinear Schrodinger Equations of Derivative Type: Variational Approach2022

    • Author(s)
      Hayashi Masayuki
    • Journal Title

      Annales Henri Poincare

      Volume: 23 Issue: 12 Pages: 4249-4277

    • DOI

      10.1007/s00023-022-01195-9

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Instability of degenerate solitons for nonlinear Schroedinger equations with derivative2022

    • Author(s)
      Noriyoshi Fukaya, Masayuki Hayashi
    • Journal Title

      NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS

      Volume: 222 Pages: 1-25

    • DOI

      10.1016/j.na.2022.112954

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Presentation] Modified energies for the generalized derivative nonlinear Schrodinger equation2024

    • Author(s)
      Masayuki Hayashi
    • Organizer
      A three-day Dispersive Meeting in Pisa
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Traveling waves for a nonlinear Schrodinger system with quadratic interaction2023

    • Author(s)
      Masayuki Hayashi
    • Organizer
      Analysis Seminar, Seminari MAP
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Modified energies for the generalized derivative NLS2023

    • Author(s)
      Masayuki Hayashi
    • Organizer
      Incontri di Analisi Matematica tra Firenze, Pisa e Siena
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Instability of stationary solutions for double power nonlinear Schrodinger equations2023

    • Author(s)
      Masayuki Hayashi
    • Organizer
      Workshop “Nonlinear Waves and Hamiltonian PDE’s”
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 1次元における2重べき型非線形シュ レディンガー方程式の定常解の不安定性2023

    • Author(s)
      深谷法良、林雅行
    • Organizer
      日本数学会2023年度年会
    • Related Report
      2022 Research-status Report
  • [Presentation] Stability theory of standing waves in a double power nonlinear Schrodinger equation2022

    • Author(s)
      林雅行
    • Organizer
      線形及び非線形分散型方程式に関する多角的研究(RIMS共同研究)
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Instability of degenerate solitons for nonlinear Schrodinger equations of derivative type2022

    • Author(s)
      林雅行
    • Organizer
      第179回神楽坂解析セミナー
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Instability of degenerate solitons for nonlinear Schrodinger equations of derivative type2022

    • Author(s)
      Masayuki Hayashi
    • Organizer
      Online Seminars on PDEs and Harmonic Analysis
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Instability of degenerate solitons for nonlinear Schrodinger equations of derivative type2022

    • Author(s)
      林雅行
    • Organizer
      東北大学 応用数理解析セミナー
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Instability theory of solitary waves in a double power nonlinear Schrodinger equation2022

    • Author(s)
      林雅行
    • Organizer
      応用解析研究会
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Traveling waves for a nonlinear Schrodinger system with quadratic interaction2022

    • Author(s)
      深谷法良、林雅行、戍亥隆恭
    • Organizer
      日本数学会2022年度秋季総合分科会
    • Related Report
      2022 Research-status Report
  • [Presentation] Traveling waves for a nonlinear Schrodinger system with quadratic interaction2022

    • Author(s)
      Masayuki Hayashi
    • Organizer
      Workshop on recent progress in standing waves for nonlinear Schrodinger equations
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2022-09-01   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi