• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

New Developments in the Theory of Global Solvability for Damped Wave Equations without Diffusion Structure

Research Project

Project/Area Number 22K20345
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0201:Algebra, geometry, analysis, applied mathematics,and related fields
Research InstitutionWaseda University

Principal Investigator

Kita Kosuke  早稲田大学, 理工学術院, 講師(任期付) (50962445)

Project Period (FY) 2022-08-31 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2023: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords消散型波動方程式 / 双曲型偏微分方程式 / 中尾の問題 / 臨界指数 / 大域適切性 / 波動方程式 / 解の爆発 / 時空重み付き評価 / 重み付き各点評価 / 減衰評価 / 時間大域適切性 / 重み付き評価
Outline of Research at the Start

消散型波動方程式は,同じ時間発展の方程式でありながら互いに異なる性質を持つ放物型方程式(熱方程式)と双曲型方程式(波動方程式)の中間に位置する.消散型波動方程式の時間大域解に関する研究は,消散項によるエネルギー散逸に着目した熱方程式の性質に想起される手法が主として用いられてきた.本研究では,波動方程式の解に対してよく知られている各点の重み付き評価を消散型波動方程式の解に対して新たに導出し,その応用として非線形問題の時間大域解の存在を示す.さらに,未解決である中尾の問題と呼ばれる消散型波動方程式と波動方程式の連立系の時間大域解の存在を証明し,臨界冪を明らかにする.

Outline of Final Research Achievements

In this research project, the estimate of solutions to the damped wave equation was mainly studied to prove the global well-posedness of the initial value problem for a coupled system of the wave equation and the dissipative wave equation. Although the wave equation with damping is classified as a hyperbolic equation like the wave equation, it is known that the properties of its solution are similar to those of the diffusion equation, which is a representative parabolic equation, due to the dissipation effect. In order to explore the essence of the wave-like properties of the damped wave equation, a new space-time weighted estimate of the solution is derived, and a new global well-posedness is partially obtained for the initial value problem of the coupled system mentioned above.

Academic Significance and Societal Importance of the Research Achievements

本研究課題では,これまで独立に発展してきた放物型方程式と双曲型方程式に対してその違いの本質を見るべく,両者の性質を併せ持つ消散型波動方程式に対しその解の時空重み付き評価に着目して解析を行った.消散型波動方程式の解析はエネルギー散逸の構造に着目した放物型的なアプローチが主流だったが,本研究ではある種双曲型的なアプローチを採用し解の性質を特徴付けることに成功した.このような見方は独自のものであり,現象の時間発展を記述する様々な数理モデルの解析に応用できることが期待される.

Report

(3 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • Research Products

    (7 results)

All 2023 2022

All Presentation (7 results) (of which Int'l Joint Research: 2 results,  Invited: 7 results)

  • [Presentation] A new weighted L^∞ estimate for the damped wave equation in three dimensions2023

    • Author(s)
      喜多航佑
    • Organizer
      秋田発展方程式小研究集会
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] 3次元消散型波動方程式の解の重み付き各点評価について2023

    • Author(s)
      喜多航佑
    • Organizer
      第189回神楽坂解析セミナー
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] 3次元消散型波動方程式の解の重み付き各点評価について2023

    • Author(s)
      喜多航佑
    • Organizer
      鳥取PDE研究集会2023
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Weighted pointwise estimates for the damped wave equation in three dimensions2023

    • Author(s)
      Kosuke Kita
    • Organizer
      International Workshop on “Fundamental Problems in Mathematical and Theoretical Physics”
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] On a weighted estimate for the solution to the damped wave equation in 3D2023

    • Author(s)
      Kosuke Kita
    • Organizer
      Workshop on Nonlinear Hyperbolic PDEs. On the occasion of 60th birthday of Professor Yi Zhou
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Weighted $L^\infty$ estimates for solutions to the damped wave equation in three space dimensions2022

    • Author(s)
      喜多 航佑
    • Organizer
      The Second One Day Workshop on Hyperbolic PDE in Kushiro
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Weighted $L^\infty$ estimates for solutions to the damped wave equation in three space dimensions and its application2022

    • Author(s)
      喜多 航佑
    • Organizer
      第15回実解析と函数解析による微分方程式セミナー
    • Related Report
      2022 Research-status Report
    • Invited

URL: 

Published: 2022-09-01   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi