Project/Area Number |
22K20355
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0202:Condensed matter physics, plasma science, nuclear engineering, earth resources engineering, energy engineering, and related fields
|
Research Institution | Nagaoka University of Technology |
Principal Investigator |
Kanai Ayaka 長岡技術科学大学, 工学研究科, 助教 (90960849)
|
Project Period (FY) |
2022-08-31 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2023: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 硫化物 / 太陽電池 / 薄膜 / 半導体 / 化合物太陽電池 / 伝導帯傾斜構造 / 硫化物薄膜 / Cu2SnS3 / Cu2(Sn1-xGex)S3 |
Outline of Research at the Start |
Cu2SnS3(CTS)を光吸収層に用いたレアメタルフリー低コスト次世代太陽電池の開発のために、従来には無いバンド構造の抜本的な見直しを図り、生成した電子の再結合を確実に抑制することができる新規電子輸送構造を実現し、CTS太陽電池の変換効率の飛躍的な向上を目指す。そのために新規3ゾーン硫化炉を用いてCTSに対しGeを加えることにより薄膜の深さ方向に対し、伝導帯におけるエネルギー位置の傾斜をつけた薄膜を作製する。さらに、様々な条件のエネルギー傾斜をつけたCTS太陽電池を作製し、それらの電気的特性を調査することにより変換効率との相関を明らかにする。
|
Outline of Final Research Achievements |
In order to realize next-generation high-efficiency solar cells with graded conduction band structures, Cu2Sn1-xGexS3 (CTGS), which is composed of inexpensive and non-toxic elements, has been investigated for the various properties of the thin films and solar cells with different [Ge]/([Ge]+[Sn]) ratios (group IV ratios). The shallow acceptor levels and mobility of CTGS thin films can be maintained even when the group IV ratio is changed in the range of 0.0-0.2 by low-temperature photoluminescence and room-temperature Hall effect measurements. Based on the above, useful insights are obtained into the defect characteristics and electrical properties required for sulfide-related solar cells with graded conduction band structures are obtained.
|
Academic Significance and Societal Importance of the Research Achievements |
現在、太陽光や風力、地熱などを用いて発電する地球にやさしい再生可能エネルギーが次世代のクリーンエネルギーとして非常に注目されており、研究が推進されている。特にその中でも太陽光発電は、無尽蔵な太陽光を用いる発電方法であり次世代を担う電力インフラとして期待されている。本研究で得られた成果は安価で無毒な元素のみから構成されている伝導帯エネルギー傾斜構造硫化物系太陽電池の実現に向けた有用な知見を含んでおり、将来における変換効率向上への突破口となるデバイス構造の指針を示す重要な情報として役立つことが期待される。
|