Project/Area Number |
22K20363
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0202:Condensed matter physics, plasma science, nuclear engineering, earth resources engineering, energy engineering, and related fields
|
Research Institution | Institute of Physical and Chemical Research |
Principal Investigator |
Shunsuke Mori 国立研究開発法人理化学研究所, 創発物性科学研究センター, 特別研究員 (60962975)
|
Project Period (FY) |
2022-08-31 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2023: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 透過型電子顕微鏡 / ローレンツ電子顕微鏡法 / 磁気構造 / 応力 / ナノインデンテーション / 有限要素法 / 相転移 |
Outline of Research at the Start |
本研究では、透過型電子顕微鏡(TEM)を用いてスキルミオンと呼ばれる特徴的な磁気構造体を観察し、室温での応力が及ぼす影響を調査する。スキルミオンはその1つ1つが規則正しく配列することで、六角形のスキルミオン格子(Sk格子)を呈する。このようなSk格子の応力下における構造転移やそのダイナミクスを直接的に解明し、磁気構造転移を用いた新たな歪み駆動型デバイスへの展開を目指す。
|
Outline of Final Research Achievements |
Magnetic materials were processed and observed under localized compression. The topological magnetic material used in the experiments exhibits a helical magnetic structure at room temperature and zero field. Using this texture as the initial state, the effects of strain were investigated. Simultaneously with Lorentz transmission electron microscopy, direct measurements of uniaxial compressive deformation and strain of the samples were carried out. The results show that the helical magnetic structure bends depending on the magnitude and direction of the compressive strain. Stress and magnetic structure were analyzed by finite element method and micromagnetic simulation, suggesting that local compressive stress induces magnetic structure changes and that the stability of the helical magnetic structure depends on the direction of strain.
|
Academic Significance and Societal Importance of the Research Achievements |
近年、歪みにより物質の相転移を誘起し、それに伴う物性変化を用いて超省エネルギーなメモリやセンサとして応用する技術が注目されている。このような相転移は結晶構造変化に関する研究が主である一方で、スピントロニクスへの応用が期待される磁気構造などは低温で歪みに大きく応答すると知られている。しかしながら、室温における実空間観察例は少ない。本研究では、室温かつゼロ磁場の状況化で、単軸圧縮歪みにより磁気構造のドメインを制御できることの観察に成功し、歪み誘起相転移を用いた電子デバイス開発の基盤になることが期待される。
|