Project/Area Number |
22K20433
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0302:Electrical and electronic engineering and related fields
|
Research Institution | University of Hyogo |
Principal Investigator |
Morimoto Keita 兵庫県立大学, 工学研究科, 助教 (00966872)
|
Project Period (FY) |
2022-08-31 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2023: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 光デバイス / 光導波路 / 電磁界解析 / 有限要素法 / 領域分割法 |
Outline of Research at the Start |
光通信の高速大容量化を目指して高性能な光デバイスが求められている.現在主流の光デバイス最適設計では,設計要件の多様化とデバイス構造の複雑化に伴い計算コストが膨大となることが問題であり,効率的かつ汎用的である設計アプローチを構築することが極めて重要である.そこで本研究では,有限要素法に基づき独自に開発している効率的解析手法を活用し,多様な数値モデリングと並列処理を可能とする高効率導波路解析ソフトウェア技術の開発を目的とする.また異なる解析法との接続を可能とすることで,現在の商用ソフトウェアでは実現できないような,解析モデルに合わせた選択性の高いシミュレーション技術へと拡張する.
|
Outline of Final Research Achievements |
To improve the efficiency of optical device design using computer simulations, we studied high-speed mechanisms of optical waveguide analysis based on the finite element method, which is a highly versatile scheme. First, we newly applied a numerical method utilizing matrix operators to the finite element method. By dividing the analysis domain into arbitrary sections, it is possible to perform parallel computations for each block structure. As a result, the computation of large-scale simultaneous linear equations can be omitted. We also applied the slowly varying envelope approximation to the construction process of matrix operators and demonstrated that it is possible to reduce the number of mesh divisions and improve calculation efficiency.
|
Academic Significance and Societal Importance of the Research Achievements |
光デバイスに求められる設計仕様は、従来と比べ飛躍的に高度化しており、計算機シミュレーションによるデバイスの最適設計が必須となりつつある。設計の要求レベルが高まる中、デバイス構造の複雑化や解探索範囲の拡大に伴う膨大な解析・設計時間が問題となっている。本研究成果は、広く用いられている汎用性の高い有限要素法解析技術を改良し、大規模な数値計算を行列演算子による小規模な計算に帰着させることで、汎用性を損なうことなく光デバイスの最適設計を効率化できるため有用性が高い。
|