Project/Area Number |
22K20494
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0402:Nano/micro science, applied condensed matter physics, applied physics and engineering, and related fields
|
Research Institution | National Institute for Materials Science |
Principal Investigator |
Zhou Weinan 国立研究開発法人物質・材料研究機構, 若手国際研究センター, ICYSリサーチフェロー (20961593)
|
Project Period (FY) |
2022-08-31 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2023: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 横熱電効果 / スピンカロリトロニクス / 熱電変換 / 異常ネルンスト効果 / 磁性材料 |
Outline of Research at the Start |
温度勾配と直交する方向に起電力が発生する横熱電効果は,熱電変換に応用する際に簡単なモジュール構造を有するため,近年大きな注目を集めている.本研究は,熱電材料と磁性材料の新規な複合材料や複合構造を作製することにより,熱電材料のゼーベック効果を磁性材料の異常ホール効果により横熱電効果へと変換させる新規なゼーベックアシスト型横熱電効果を開拓し,それを用いて大きな横熱電能の実現を目標とする.
|
Outline of Final Research Achievements |
This project aims to realize large transverse thermopower with Seebeck-driven transverse magneto-thermoelectric generation, where magnetic and thermoelectric materials are combined to create new composite materials. For this purpose, we focused on the simplest way to combine a magnetic material and a thermoelectric material, i.e., stacking a magnetic layer and a thermoelectric layer together to form a bilayer. We derived the expression for its transverse thermopower, which varies with the thickness of the layers, and peaks at a certain thickness ratio. This prediction was well reproduced in the experiment. The sample with the proper thickness ratio showed transverse thermopower much larger than that of the magnetic material.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では,熱電材料と磁性材料を積層しただけのシンプルな構造において,ゼーベック駆動横型磁気熱電効果を利用して大きな横熱電能が得られることを実証した.積層構造のトランスポート特性における計算値と実験結果の良い一致から,複合材料を設計する際の重要な知見が得られた.従来熱電材料と磁性材料を組み合わせる際に使う閉回路構造と比べて積層構造が作りやすく応用上の汎用性が高いため,これを活用した新しい環境発電技術や高感度な熱流センサなどへの展開が期待される.
|