• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Challenge toward development an artificial tool for cellular liquid-liquid phase separation by using optical condensation

Research Project

Project/Area Number 22K20512
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0403:Biomedical engineering and related fields
Research InstitutionOsaka Metropolitan University

Principal Investigator

Toyouchi Shuichi  大阪公立大学, 研究推進機構, 特任講師 (40851382)

Project Period (FY) 2022-08-31 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2023: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords光捕捉 / 光濃縮 / 液液相分離 / 細胞内液液相分離 / 光圧 / タンパク質 / 光ピンセット / 細胞
Outline of Research at the Start

近年、液液相分離によって細胞内に形成される非膜オルガネラが様々な生体現象に関わっていることが示され大きな注目を集めている。本研究では光圧による局所的光濃縮を利用した人工液液相分離ツールの開発を目指した基礎的研究を行う。光濃縮による液液相分離現象を、分子集合体から非膜オルガネラへと発展する階層構造から理解し、階層間のつながりやその時間スケールを明らかにする。さらには本研究で得られた化学的知見を基軸とし、生化学反応制御および細胞操作を可能とする新しい光技術へ発展させる。

Outline of Final Research Achievements

We demonstrated laser-induced liquid-liquid phase separation (LLPS) of a protein by focusing a laser at the air-solution interface. When a laser is focused on the air-solution interface of a protein solution, a transient and local highly concentrated domain can be formed near the focus point. We conducted basic research to develop a new tool to artificially induce intracellular LLPS by utilizing spatiotemporally controlled optical condensation. Using Hen egg white lysozyme (HEWL) as a model protein, we verified that LLPS could be induced in HEWL solution by optical condensation and succeeded in forming LLPS microdroplets. It has also been shown that when a mixed solution of HEWL and bovine serum albumin underwent optical condensation to mimic the intracellular molecular crowding environment, the optical condensation-induced LLPS microdroplet was formed more efficiently than a single protein solution.

Academic Significance and Societal Importance of the Research Achievements

細胞内液液相分離(LLPS)によって形成される非膜オルガネラが様々な生体現象に関わっていることが示され大きな注目を集めている。一方で、LLPSを高い時空間分解能で確実に捉える人工LLPSツールが求められている。本研究で得られた成果は、光濃縮を高時空分解能を有する人工LLPSツールとして利用可能である事を示し、光濃縮誘起LLPSを通した生化学反応制御さらには細胞操作を可能とする新規光技術へ発展する事が期待できる。観測された光濃縮誘起LLPSは、光濃縮下に特異的なLLPSである事が示唆されており、光濃縮下での生体分子間相互作用の制御に繋がる新しい知見として、今後の研究発展が大いに期待できる。

Report

(3 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • Research Products

    (13 results)

All 2024 2023 2022 Other

All Int'l Joint Research (5 results) Journal Article (1 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results) Presentation (7 results)

  • [Int'l Joint Research] 台湾国立陽明交通大学(台湾)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Katholieke Universiteit Leuven(ベルギー)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] 国立陽明交通大学(その他の国・地域 Taiwan)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] ルーバン大学(ベルギー)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] メルボルン大学(オーストラリア)

    • Related Report
      2022 Research-status Report
  • [Journal Article] Two-stage optical trapping and assembling of protein at air/solution interface2023

    • Author(s)
      Yi Po-Wei、Chiu Wei-Hsiang、Toyouchi Shuichi*、Bresoli-Obach Roger*、Hofkens Johan、Chatani Eri、Hosokawa Yoichiroh*、Sugiyama Teruki*、Masuhara Hiroshi*
    • Journal Title

      Applied Physics Express

      Volume: 16 Issue: 2 Pages: 025501-025501

    • DOI

      10.35848/1882-0786/acb3ab

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Optical Trapping and Single Droplet Formation of Lysozyme at Solution Surface2024

    • Author(s)
      Yi-Sian Chien
    • Organizer
      The 71st JSAP Spring Meeting 2024
    • Related Report
      2023 Annual Research Report
  • [Presentation] 異種粒子の光圧誘起集合化による 極微量DNA検出2023

    • Author(s)
      豊内 秀一
    • Organizer
      新学術光圧ナノ物質操作・若手領域会議
    • Related Report
      2022 Research-status Report
  • [Presentation] 異種プローブの光濃縮による迅速・高感度なDNA定量分析法の開発2023

    • Author(s)
      豊内 秀一
    • Organizer
      2023年第70回応用物理学会春季学術講演会
    • Related Report
      2022 Research-status Report
  • [Presentation] Two-Stage Optical Trapping Mechanism of Protein at its Air/Solution Interface2023

    • Author(s)
      Hiroshi Masuhara
    • Organizer
      2023年第70回応用物理学会春季学術講演会
    • Related Report
      2022 Research-status Report
  • [Presentation] 非線形フォトクロミック反応を用いた 銀ナノワイヤープラズモニック導波路効果の可逆的制御2022

    • Author(s)
      豊内 秀一
    • Organizer
      2022年光化学討論会
    • Related Report
      2022 Research-status Report
  • [Presentation] Optically Reconfigurable Random Laser using Optically Evolved Assembling of Polystyrene Microparticles2022

    • Author(s)
      Shuichi Toyouchi
    • Organizer
      2022年第83回応用物理学会秋季学術講演会
    • Related Report
      2022 Research-status Report
  • [Presentation] Cooperative Optical Trapping Dynamics of Two Proteins at Solution Surface2022

    • Author(s)
      Wei-Hsiang Chiu
    • Organizer
      2022年第83回応用物理学会秋季学術講演会
    • Related Report
      2022 Research-status Report

URL: 

Published: 2022-09-01   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi