• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Improvement of predictive accuracies of functional outcomes of stroke patients by machine learning models

Research Project

Project/Area Number 22K21225
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0909:Sports sciences, physical education, health sciences, and related fields
Research InstitutionNational Center of Neurology and Psychiatry

Principal Investigator

MIYAZAKI YUTA  国立研究開発法人国立精神・神経医療研究センター, 病院 身体リハビリテーション部, 医師 (70966192)

Project Period (FY) 2022-08-31 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2023: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywordsリハビリテーション / 機械学習 / 予後予測 / 脳卒中 / FIM / ADL / 深層学習 / deep learning / machine learning
Outline of Research at the Start

本研究は,機械学習により脳卒中患者の機能的予後予測精度の改善および予後予測因子の同定を目的とする.正確な機能的予後予測は,患者の退院後の生活の不安を低減できる.先行研究では,線形データを仮定する重回帰分析で予後予測を行っているが,臨床データは非線形データであるため,予測精度が低下する可能性があった.近年,非線形データを扱える機械学習による予後予測の報告が見られるが, 症例数が少なく,予測精度が十分でない可能性もあった.そこで,本研究では1000例程度の脳卒中患者の臨床データを収集した上で,機械学習アルゴリズムと重回帰分析による精度を比較する.

Outline of Final Research Achievements

Stroke is one of the conditions requiring caregiving, underscoring the importance of prognosis. Previous research utilizing multiple regression analysis for stroke prognosis has indicated potential diminished predictive accuracy due to the non-linear nature of clinical data. Hence, this study investigated whether machine learning capable of analyzing non-linear data could enhance prognosis prediction for stroke patients compared to traditional regression analysis.
This study performed prognosis prediction of discharge Functional Independence Measure (FIM) scores, a prominent assessment index of activities of daily living (ADL), for 1046 stroke patients based on age and FIM scores at admission. The analysis utilized multiple regression analysis along with five machine learning algorithms. This study demonstrated that machine learning improves prognostic prediction accuracy compared to multiple regression analysis.

Academic Significance and Societal Importance of the Research Achievements

脳卒中は、介護が必要となる代表的疾患の一つである。また、介護は退院後の患者家族の生活にも影響を与える。そのため、脳卒中発症早期から退院時ADLの予後予測が可能となれば、退院後生活の様々な準備を行うための時間的猶予を持てる。本研究は、機械学習が重回帰分析よりも脳卒中患者の予後予測精度を改善することを報告した。本研究は、機械学習が、脳卒中患者の予後予測をより高い精度で可能とし、患者や家族の退院後の生活に有益な情報を提供できる可能性が高いことが示唆した。

Report

(3 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • Research Products

    (5 results)

All 2023

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Open Access: 2 results) Presentation (3 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] Improvement of predictive accuracies of functional outcomes after subacute stroke inpatient rehabilitation by machine learning models2023

    • Author(s)
      Miyazaki Yuta、Kawakami Michiyuki、Kondo Kunitsugu、Tsujikawa Masahiro、Honaga Kaoru、Suzuki Kanjiro、Tsuji Tetsuya
    • Journal Title

      PLOS ONE

      Volume: 18 Issue: 5 Pages: e0286269-e0286269

    • DOI

      10.1371/journal.pone.0286269

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Comparing the contribution of each clinical indicator in predictive models trained on 980 subacute stroke patients: a retrospective study2023

    • Author(s)
      Miyazaki Yuta、Kawakami Michiyuki、Kondo Kunitsugu、Tsujikawa Masahiro、Honaga Kaoru、Suzuki Kanjiro、Tsuji Tetsuya
    • Journal Title

      Scientific Reports

      Volume: 13 Issue: 1

    • DOI

      10.1038/s41598-023-39475-x

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] 回復期脳卒中患者における大規模データを用いた予後予測因子の寄与率の検討2023

    • Author(s)
      宮崎裕大,川上途行,鈴木幹次郎,十見恭平,秋本知則,辻川将弘,伊藤真梨,近藤国嗣,辻哲也
    • Organizer
      第60回日本リハビリテーション医学会学術集会
    • Related Report
      2023 Annual Research Report
  • [Presentation] 大規模データを用いた回復期脳卒中患者におけるトイレ関連動作自立に関する予後予測モデルの検討2023

    • Author(s)
      宮崎裕大,川上途行,鈴木幹次郎,十見恭平,秋本知則,辻川将弘,伊藤真梨,近藤国嗣,辻哲也
    • Organizer
      リハビリテーション医療DX研究会第1回学術集会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Improvement of accuracy in predicting subacute stroke functional outcome by machine learning with increased clinical indicators: Aretrospective study2023

    • Author(s)
      Y. MIYAZAKI, M. KAWAKAMI, K. KONDO, M. TSUJIKAWA, K. HONAGA, K. SUZUKI, T. TSUJI
    • Organizer
      Society for Neuroscience 2023
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research

URL: 

Published: 2022-09-01   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi