• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Prediction of breast cancer growth using mammograms to encourage screening and early detection of breast cancer

Research Project

Project/Area Number 22K21252
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0909:Sports sciences, physical education, health sciences, and related fields
Research InstitutionNiigata University of Health and Welfare

Principal Investigator

Kai Chiharu  新潟医療福祉大学, 医療技術学部, 助教 (90963934)

Project Period (FY) 2022-08-31 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2023: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords医療画像AI / 乳がん / マンモグラム / 医用画像AI
Outline of Research at the Start

本研究の目的は、異常が指摘可能な明らかな乳がん所見を呈していないマンモグラムからデータ診断AIによって乳がんの成長予測を行い、マンモグラム上で指摘可能な異常が発生する時期を予測し、検診の受診勧奨を行う最適化システムを開発することである。本研究を通して、乳がんの成長予測を行うAI技術が、検診の受診勧奨および乳がんの早期発見に効果があることを明らかにする。

Outline of Final Research Achievements

The purpose of this study is to develop an optimized system that uses a diagnostic AI with mammograms to predict breast cancer growth and make recommendations for screening.
Throughout the entire research period, we constructed a database of mammograms and clinical data, developed an AI algorithm for breast cancer growth prediction, conducted clinical evaluations to confirm the prediction of breast cancer growth using this AI. Therefore, we identified factors that should be used to make recommendations for screening, and we were able to summarize in two papers.

Academic Significance and Societal Importance of the Research Achievements

乳腺領域の濃度の上昇に着目し、正常症例のマンモグラムを入力とした乳腺量を推定するAIの開発を行った。
乳がん症例の中には、マンモグラフィ検査では所見なしもしくは良性と判断された症例だが、超音波検査にてがんが発見された症例(Non-visible乳がん症例)も報告されている。そこで、AIから推定した乳腺量を用いて、Non-visible乳がん患者を推定する因子を特定した。本研究で特定された因子に基づいて、マンモグラフィ検査+超音波検査の受診勧奨を行うことで、乳がんの早期発見、死亡率減少に寄与できると考えている。

Report

(3 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • Research Products

    (12 results)

All 2024 2023 2022 Other

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Open Access: 2 results) Presentation (8 results) (of which Int'l Joint Research: 3 results,  Invited: 1 results) Remarks (1 results)

  • [Journal Article] Identifying factors that indicate the possibility of non-visible cases on mammograms using mammary gland content ratio estimated by artificial intelligence2024

    • Author(s)
      Kai Chiharu、Otsuka Tsunehiro、Nara Miyako、Kondo Satoshi、Futamura Hitoshi、Kodama Naoki、Kasai Satoshi
    • Journal Title

      Frontiers in Oncology

      Volume: 14

    • DOI

      10.3389/fonc.2024.1255109

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Automated Estimation of Mammary Gland Content Ratio Using Regression Deep Convolutional Neural Network and the Effectiveness in Clinical Practice as Explainable Artificial Intelligence2023

    • Author(s)
      Kai Chiharu、Ishizuka Sachi、Otsuka Tsunehiro、Nara Miyako、Kondo Satoshi、Futamura Hitoshi、Kodama Naoki、Kasai Satoshi
    • Journal Title

      Cancers

      Volume: 15 Issue: 10 Pages: 2794-2794

    • DOI

      10.3390/cancers15102794

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] 乳房X線画像における乳房構成解析(Breast Density Assessment)ソフトウエアの有用性2023

    • Author(s)
      櫻井 典子 , 甲斐 千遥 , 長 和弘 , 近藤 敏志 , 児玉 直樹 , 笠井 聡
    • Journal Title

      日本診療放射線技師会誌

      Volume: 70 Pages: 756-763

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Presentation] Evaluation of the usefulness of breast density assessment application for radiographers: comparison with mammographers2024

    • Author(s)
      Chiharu Kai, Satoshi Kasai
    • Organizer
      European Society of Radiology
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Breast cancer risk assessment with AI-based Breast Age estimation2024

    • Author(s)
      Chiharu Kai, Satoshi Kasai
    • Organizer
      European Society of Radiology
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Attempt to perform subtype classification on mammograms using features from Vision Transformers and global features2024

    • Author(s)
      Satoshi Kasai, Hideaki Tamori, Chiharu Kai
    • Organizer
      European Society of Radiology
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Radio(geno)micsによる乳がん診断の可能性2023

    • Author(s)
      甲斐千遥
    • Organizer
      第79回日本放射線技術学会総会学術大会
    • Related Report
      2023 Annual Research Report 2022 Research-status Report
    • Invited
  • [Presentation] 半主観的正解領域決定に基づく乳腺領域自動抽出AIシステムの開発:初期方向依存の影響の確認2023

    • Author(s)
      石塚紗智、甲斐千遥、大塚恒博、二村仁、笠井聡
    • Organizer
      医用画像情報学会 令和5年度年次(第197回)大会
    • Related Report
      2023 Annual Research Report
  • [Presentation] 乳房構成算出のための乳腺領域自動抽出AIシステムの開発:U-Netによるパラメータ調整の検討2023

    • Author(s)
      石塚紗智、甲斐千遥、笠井聡
    • Organizer
      第23回新潟医療福祉学会学術集会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Deep Convolutional Neural Networkから算出した特徴量を用いた乳房構成分類手法の検討:主成分分析による次元削減手法2023

    • Author(s)
      甲斐千遥、石塚紗智、笠井聡
    • Organizer
      第23回新潟医療福祉学会学術集会
    • Related Report
      2023 Annual Research Report
  • [Presentation] 複数システムのマンモグラフィ画像を用いた乳腺含有率を推定する回帰型DCNNによる乳房構成解析システムの開発2022

    • Author(s)
      甲斐千遥
    • Organizer
      第38回 日本診療放射線技師学術大会
    • Related Report
      2022 Research-status Report
  • [Remarks] researchmap

    • URL

      https://researchmap.jp/chiharu-kai

    • Related Report
      2023 Annual Research Report

URL: 

Published: 2022-09-01   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi