• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Deep Learning-based Semantics Information Compensation for Color Vision Deficiency

Research Project

Project/Area Number 22K21274
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 1001:Information science, computer engineering, and related fields
Research InstitutionUniversity of Yamanashi

Principal Investigator

ZHU ZHENYANG  山梨大学, 大学院総合研究部, 助教 (10954927)

Project Period (FY) 2022-08-31 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2023: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords色覚補償 / 拡張現実 / 深層学習 / 意味論的情報 / 色覚障がい支援
Outline of Research at the Start

本研究課題では,色覚障がいによる意味論的情報損失を補償するために,深層学習モデル及びAR Glassesを取り入れた色覚補償技術の確立に向けて,以下の3つの課題に取り組む.(1)AR Glassesを装着するユーザを中心にし,深層学習モデルを搭載するサーバと連携し,ユーザに色覚支援用情報を提供する.(2)ユーザがおかれるシチュエーションに合わせて,二つの使用モードを設計し,それぞれに必要な深層学習モデルを実装する.(3)実装される深層学習モデルの学習に必要とされる色ラベル付き画像データセットを収集するために,既存のオブジェクト検出用深層学習モデルを利用して,自動的な収集方法を開発する.

Outline of Final Research Achievements

In this study, a color vision compensation system called Color Communication Glasses (CC-Glasses) was developed, which incorporates a deep learning model and augmented reality (AR) glasses to compensate for semantic information loss due to color vision deficiency (CVD). Assuming that users with CVD have difficulty identifying target objects specified by colors, the system sends scenes shot captured by AR glasses to a server that incorporates a deep learning model, and displays the analyzed results on AR glasses. We created a dataset for training the deep learning model used in this study. Moreover, in order to verify the effectiveness of the proposed system, an evaluation experiment involving people with CVD was conducted.

Academic Significance and Societal Importance of the Research Achievements

本研究は医学と情報工学の共同研究であり,未だに医学的な根治手段が見つかってない色覚障がいに対する情報技術による支援策を提供する.医工融合研究の重要性に関する発信にもつながる.本研究で開発するAI技術により,色の意味情報損失が補償され,CVD患者が自力で色を正確に認識したり形容することが可能となり,危険にさらされるリスクを避けることができる.また,日常生活補助のみならず,仕事面でも活躍できる分野が広がると考えられる.さらに,CVD患者が周囲とのコミュニケーションがより取りやすくなるため,社会全体においてQoLの向上が期待される.

Report

(3 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • Research Products

    (12 results)

All 2024 2023 2022

All Journal Article (2 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 2 results,  Open Access: 2 results) Presentation (10 results) (of which Int'l Joint Research: 7 results)

  • [Journal Article] Image recoloring for color vision deficiency compensation using Swin transformer2024

    • Author(s)
      Chen Ligeng、Zhu Zhenyang、Huang Wangkang、Go Kentaro、Chen Xiaodiao、Mao Xiaoyang
    • Journal Title

      Neural Computing and Applications

      Volume: 36 Issue: 11 Pages: 6051-6066

    • DOI

      10.1007/s00521-023-09367-2

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Image recoloring for Red-Green dichromats with compensation range-based naturalness preservation and refined dichromacy gamut2022

    • Author(s)
      Wangkang Huang, Zhenyang Zhu, Ligeng Chen, Kentaro Go, Xiaodiao Chen, Xiaoyang Mao
    • Journal Title

      The Visual Computer

      Volume: 38 Issue: 9-10 Pages: 3405-3418

    • DOI

      10.1007/s00371-022-02549-4

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] STMA: A Fast Visual Field Defect Assessment Method Using Quadtree and Head-Mounted Display2024

    • Author(s)
      Chao Ge、Zhenyang Zhu、Kenji Kashiwagi、Masahiro Toyoura、Kentaro Go、Issei Fujishiro、Xiaoyang Mao
    • Organizer
      NICOGRAPH International 2024
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Perceptual Uniformity-Aware Image Recoloring Method for Red-Green Anomalous Trichromacy2024

    • Author(s)
      Haiqiang Zhou、Wangkang Huang、Zhenyang Zhu、Xiao-Diao Chen、Kentaro Go、Xiaoyang Mao
    • Organizer
      NICOGRAPH International 2024
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A Study on Impact of Displaying Depth on User Recognition to Virtual Information2024

    • Author(s)
      Ying Tang、Zhenyang Zhu、Xiaoyang Mao
    • Organizer
      NICOGRAPH International 2024
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Deep Learning and Augmented-Reality Glasses based Meat Cooking Support for Color Vision Disorder Compensation2023

    • Author(s)
      Shota Chiba、Zhenyang Zhu、Daisuke Inoue、Xiaoyang Mao
    • Organizer
      NICOGRAPH International 2023
    • Related Report
      2023 Annual Research Report 2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] Seamless Image Editing for Perceptual Size Restoration Based on Seam Carving2023

    • Author(s)
      Naohiko Ishikawa、Zhenyang Zhu、Jong-Nam Kim、Wan-Young Chung、Kentaro Go、Xiaoyang Mao
    • Organizer
      Computer Graphics International 2023
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Fast Image Recoloring for Anomalous Trichromacy with Contrast Enhancement and Naturalness Preservation2023

    • Author(s)
      Haiqiang Zhou、Wangkang Huang、Zhenyang Zhu、Xiaodiao Chen、Xiaoyang Mao
    • Organizer
      Visual Computing シンポジウム
    • Related Report
      2023 Annual Research Report
  • [Presentation] Metamorphopsia Insepction System based on Relevance Feedback2023

    • Author(s)
      Zhenyang Zhu、Katsuhito Moritake、Kenji Kashiwagi、Masahiro Toyoura、Kentaro Go、Issei Fujishiro、Xiaoyang Mao
    • Organizer
      International Conference on System, Man and Cybernetics 2023
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A Personalized Generative Model for Color Vision Deficiency2023

    • Author(s)
      陳 立庚、朱 臻陽、茅 暁陽
    • Organizer
      画像電子学会ビジュアルコンピューティングワークショップ
    • Related Report
      2023 Annual Research Report
  • [Presentation] CC-Glasses: Color Communication Support for People with Color Vision Deficiency Using Augmented Reality and Deep Learning2023

    • Author(s)
      Zhenyang Zhu、Jiyi Li、Ying Tang、Kentaro Go、Masahiro Toyoura、Kenji Kashiwagi、Issei Fujishiro、Xiaoyang Mao
    • Organizer
      Augmented Humans 2023
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] Swin Transformerを利用した色覚障がい支援用色変換手法2022

    • Author(s)
      陳 立庚、朱 臻陽、郷 健太郎、黄 望康、茅 暁陽
    • Organizer
      Visual Computing シンポジウム
    • Related Report
      2022 Research-status Report

URL: 

Published: 2022-09-01   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi