• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

The initiation and arrest mechanisms of small internal cracks in very high cycles fatigue regime in titanium alloys

Research Project

Project/Area Number 22KJ0059
Project/Area Number (Other) 22J10639 (2022)
Research Category

Grant-in-Aid for JSPS Fellows

Allocation TypeMulti-year Fund (2023)
Single-year Grants (2022)
Section国内
Review Section Basic Section 18010:Mechanics of materials and materials-related
Research InstitutionHokkaido University

Principal Investigator

薛 高格  北海道大学, 大学院工学院, 特別研究員(PD)

Project Period (FY) 2023-03-08 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥1,700,000 (Direct Cost: ¥1,700,000)
Fiscal Year 2023: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2022: ¥900,000 (Direct Cost: ¥900,000)
Keywords金属疲労 / き裂進展 / チタン合金 / 非破壊観察 / 超高サイクル疲労 / Very high cycle fatigue / Internal crack / Titanium alloy / Crack growth
Outline of Research at the Start

This research aims to investigate the initiation and arrest behaviors of small internal cracks associated with the very high cycles fatigue regime (VHCF), relating to how the internal fracture starts and stops. These crack behaviors lead to a fully understand of the internal fracture mechanisms and provide critical information to estimate the fatigue strength in VHCF for typical utilization in industries.

Outline of Annual Research Achievements

超高サイクル疲労とは一般的に疲労限度とみなされる応力より低い応力でも1千万回程度以上の繰り返し負荷を加えた場合に材料の内部を起点とした破壊(内部起点型破壊)が生じるという特異な現象である。材料内部の微小き裂は非破壊検出が極めて困難であり、内部起点型破壊の発生機構の詳細は解明されていない。
そこで私は内部疲労き裂の挙動を大型放射光施設SPring-8の放射光X線-CTを用いて明らかにした。その中で、ビームライン上に設置するピエゾ疲労試験機の開発、物質・材料研究機構(NIMS)と共同で材料熱処理条件の検討、高輝度光科学研究センター(JASRI)および九州大学と共同でCT撮影条件の最適化など、様々な技術開発に携わり、内部疲労き裂の三次元進展過程とき裂の開閉口挙動を直接観測した。さらにCT観察結果と破面・結晶解析を併用することで、破壊起点におけるすべり系や結晶方位などの情報を特定し、内部起点型破壊の破面の特徴に対応するき裂進展寿命と進展速度を明らかにした。
一方、内部疲労き裂は大気から遮断され、酸化や気体の吸着を伴わない一種の真空環境中を進展するという考えに基づき、真空環境(~10-5 Pa)における表面微小き裂進展試験を実施した。真空中の進展速度は大気中より低下し、内部疲労き裂の進展速度と同程度となった。以上から内部起点型破壊が超高サイクル域で生じる主な要因が材料内部におけるき裂進展速度の低下にあることを示した。
さらに、私は真空中におけるき裂進展速度の低下機構の1つである転位すべりの可逆性(逆すべり)に着目した.チタン合金の析出物が逆すべりを妨げるというアイデアの下で異なる析出条件の熱処理を新たに考案し,実験を行った結果、析出物が少ない材料の内部疲労寿命は著しく向上した。この結果に基づき,き裂進展を助長・抑制する組織因子を考察し、内部き裂進展を抑制可能な熱処理法を提案した。

Report

(2 results)
  • 2023 Annual Research Report
  • 2022 Annual Research Report
  • Research Products

    (8 results)

All 2023 2022

All Journal Article (4 results) (of which Peer Reviewed: 4 results) Presentation (4 results) (of which Int'l Joint Research: 3 results)

  • [Journal Article] Full-life growth behavior of a naturally initiated internal fatigue crack in beta titanium alloy via in situ synchrotron radiation multiscale tomography2023

    • Author(s)
      Xue Gaoge、Nakamura Takashi、Fujimura Nao、Takahashi Kosuke、Oguma Hiroyuki、Takeuchi Akihisa、Uesugi Masayuki、Uesugi Kentaro
    • Journal Title

      International Journal of Fatigue

      Volume: 170 Pages: 107571-107571

    • DOI

      10.1016/j.ijfatigue.2023.107571

    • Related Report
      2023 Annual Research Report 2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Experimental Approach for Clarifying Initiation and Growth Behaviors of Internal Fatigue Cracks Using Synchrotron Radiation Multiscale X-ray Computed Tomography2023

    • Author(s)
      Nakamura Takashi、Xue Gaoge、Kon Yuma、Fujimura Nao、Yamazaki Takuya、Tonozaki Nobuyuki、Takeuchi Akihisa、Uesugi Masayuki、Uesugi Kentaro
    • Journal Title

      Materials Performance and Characterization

      Volume: 12 Issue: 2 Pages: 20230023-20230023

    • DOI

      10.1520/mpc20230023

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Detection of small internal fatigue cracks in Ti‐6Al‐4V via synchrotron radiation nanocomputed tomography2022

    • Author(s)
      Xue Gaoge、Tomoda Yuta、Nakamura Takashi、Fujimura Nao、Takahashi Kosuke、Yoshinaka Fumiyoshi、Takeuchi Akihisa、Uesugi Masayuki、Uesugi Kentaro
    • Journal Title

      Fatigue & Fracture of Engineering Materials & Structures

      Volume: 45 Issue: 9 Pages: 2693-2702

    • DOI

      10.1111/ffe.13765

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Initiation and propagation of small fatigue crack in beta titanium alloy observed through synchrotron radiation multiscale computed tomography2022

    • Author(s)
      Xue Gaoge、Nakamura Takashi、Fujimura Nao、Takahashi Kosuke、Oguma Hiroyuki、Takeuchi Akihisa、Uesugi Masayuki、Uesugi Kentaro
    • Journal Title

      Engineering Fracture Mechanics

      Volume: 263 Pages: 108308-108308

    • DOI

      10.1016/j.engfracmech.2022.108308

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Presentation] A study of the significance of fractographic featureson internal fatigue fracture in titanium alloys via synchrotron radiation computed tomography.2023

    • Author(s)
      Gaoge Xue
    • Organizer
      ATEM-iDICs '23, JSME-MMD & iDICs
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A naturally initiated internal fatigue crack growth process in beta titanium alloy using in situ synchrotron radiation multiscale computed tomography2023

    • Author(s)
      Gaoge Xue
    • Organizer
      13th International Fatigue Congress (FATIGUE2022+1)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Three-dimensional observation of small fatigue cracks growth process in a beta titanium alloy Ti-22V-4Al using multiscale synchrotron radiation computed tomography2022

    • Author(s)
      Gaoge Xue
    • Organizer
      The 7th International Conference on Advanced Steels (ICAS2022)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Initiation and early growth behaviors of an internal fatigue crack in beta titanium alloy via synchrotron radiation multiscale computed tomography2022

    • Author(s)
      Gaoge Xue
    • Organizer
      日本材料学会 第35回疲労シンポジウム
    • Related Report
      2022 Annual Research Report

URL: 

Published: 2022-04-28   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi