• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

制限定理と非線形分散型方程式の初期値問題の研究

Research Project

Project/Area Number 22KJ0446
Project/Area Number (Other) 21J00514 (2021-2022)
Research Category

Grant-in-Aid for JSPS Fellows

Allocation TypeMulti-year Fund (2023)
Single-year Grants (2021-2022)
Section国内
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionTokyo Institute of Technology (2023)
Saitama University (2021-2022)

Principal Investigator

木下 真也  東京工業大学, 理学院, 助教

Project Period (FY) 2023-03-08 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2023: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2022: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2021: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords分散型方程式 / 調和解析 / フーリエ制限定理 / 適切性 / ストリッカーツ評価式 / 各点収束問題
Outline of Research at the Start

本研究では、非線形シュレディンガー方程式に代表される非線形分散型方程式のスケール臨界空間での時間大域的適切性を考える。スケール臨界空間での適切性は、一般にそれ以上広い空間で適切性が得られないことから、最良の結果であるといえる。分散型方程式の時間空間に関する線形、非線形評価式は、調和解析であらわれる制限定理と強く関連している。本研究の目的は、調和解析で近年発展著しい多重線形制限定理などのフーリエ制限定理を改良、一般化し、非線形分散型方程式の非線形評価に適用する手法を確立することである。

Outline of Annual Research Achievements

本年度は主に次の2つの問題に取り組んだ.
(1). 前年度に引き続きフォンノイマン-シュレディンガー方程式の解の密度関数に関する時空間評価と, 各点収束問題について研究を行った. 一つの粒子に対する各点収束問題は Carleson の問題として広く知られているが, 今回の問題は, 無限個の粒子に対する各点収束問題とみなすことができる. 結果の大部分は前年度に既に得ていたが, 本年度は研究結果をまとめ現在国際雑誌に投稿中である. また, シュレディンガー方程式を波動方程式に変えた問題も考察した.
(2). 周期境界条件下でのシュレディンガー系の適切性について考えた. 適切性の証明に必要な初期データの正則性は連立方程式の線形部の係数の関係式の符号に依存することが知られている. 本年度の研究によって, 非線形共鳴相互作用が生じる状況での空間二次元シュレディンガー系のエネルギー空間での時間大域的適切性を得た. エネルギー空間での適切性はある意味で最適なものとなっている. よって, 線形解評価から生じる僅かな正則性の損失がエネルギー空間での適切性を困難にしていた.本研究では線形解評価ではなく三重線形解評価を証明し, 正則性の損失を回避することに成功した. また, 質量臨界条件下でのエネルギー空間での適切性に加え, エネルギー臨界である空間4次元での時間大域的適切性も得ることができた. さらに, 非適切性の結果も得ることができ周期境界条件化でのシュレディンガー系の適切性の研究を大きく進めることができた.

Report

(3 results)
  • 2023 Annual Research Report
  • 2022 Annual Research Report
  • 2021 Annual Research Report
  • Research Products

    (27 results)

All 2024 2023 2022 2021 Other

All Int'l Joint Research (2 results) Journal Article (5 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 5 results,  Open Access: 3 results) Presentation (20 results) (of which Int'l Joint Research: 6 results,  Invited: 19 results)

  • [Int'l Joint Research] University of Innsbruck(オーストリア)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Institute Superior Tecnic(ポルトガル)

    • Related Report
      2023 Annual Research Report
  • [Journal Article] Sharp well-posedness for the Cauchy problem of the two dimensional quadratic nonlinear Schr?dinger equation with angular regularity2024

    • Author(s)
      Hirayama Hiroyuki、Kinoshita Shinya、Okamoto Mamoru
    • Journal Title

      Journal of Differential Equations

      Volume: 395 Pages: 181-222

    • DOI

      10.1016/j.jde.2024.02.037

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Decoupling Inequality for Paraboloid Under Shell Type Restriction and Its Application to the Periodic Zakharov System2023

    • Author(s)
      Kinoshita Shinya、Nakamura Shohei、Sanwal Akansha
    • Journal Title

      Communications in Mathematical Physics

      Volume: 404 Issue: 2 Pages: 883-926

    • DOI

      10.1007/s00220-023-04852-0

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Global well-posedness and scattering for the Zakharov system at the critical space in three spatial dimensions with small and radial initial data2023

    • Author(s)
      Kato Isao、Kinoshita Shinya
    • Journal Title

      Journal of Mathematical Analysis and Applications

      Volume: 518 Issue: 1 Pages: 126667-126667

    • DOI

      10.1016/j.jmaa.2022.126667

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A remark on the well-posedness for a system of quadratic derivative nonlinear Schr?dinger equations2022

    • Author(s)
      Hirayama Hiroyuki、Kinoshita Shinya、Okamoto Mamoru
    • Journal Title

      Communications on Pure and Applied Analysis

      Volume: 21 Issue: 10 Pages: 3309-3334

    • DOI

      10.3934/cpaa.2022101

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Local well-posedness of a system describing laser-plasma interactions2022

    • Author(s)
      Sebastian Herr, Isao Kato, Shinya Kinoshita, Martin Spitz
    • Journal Title

      Vietnam Journal of Mathematics

      Volume: -

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Convolution estimates and its application to the system of quadratic derivative nonlinear Schrodinger equations2023

    • Author(s)
      木下真也
    • Organizer
      微分方程式の総合的研究
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Global well-posedness and scattering of the semi-relativistic equations with Hartree type nonlinearity2023

    • Author(s)
      木下真也
    • Organizer
      第7回神楽坂非線形波動研究会
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Convolution estimates and its application to a system of quadratic derivative nonlinear Schrodinger equations2023

    • Author(s)
      木下真也
    • Organizer
      調和解析セミナー
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Decoupling 不等式とその偏微分方程式への応用について2023

    • Author(s)
      木下真也
    • Organizer
      大岡山談話会
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Pointwise convergence for orthonormal systems2023

    • Author(s)
      木下真也
    • Organizer
      東工大数理解析セミナー
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Decoupling inequality under thin annulus constraint and its application to the periodic Zakharov system2023

    • Author(s)
      Shinya Kinoshita
    • Organizer
      Harmonic Analysis and its Applications 2023
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Decoupling inequality and its application to the periodic Zakharov system2023

    • Author(s)
      Shinya Kinoshita
    • Organizer
      14th ISAAC Congress 2023
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Pointwise convergence for orthonormal systems2023

    • Author(s)
      木下真也
    • Organizer
      第14回名古屋微分方程式研究集会
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Boundary Strichartz estimates for orthonormal systems2023

    • Author(s)
      Shinya Kinoshita
    • Organizer
      MATRIX-RIMS Tandem Workshop on Geometric Analysis in Harmonic Analysis and PDE
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Small data global well-posedness and scattering of the semi-relativistic equations with Hartree type nonlinearity2022

    • Author(s)
      木下真也
    • Organizer
      RIMS共同研究「線形及び非線形分散型方程式に関する多角的研究」
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] 多次元トーラス上の Zakharov system の時間局所適切性について2022

    • Author(s)
      木下真也
    • Organizer
      第36回さいたま数理解析セミナー
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] The local well-posedness of the periodic Zakharov system2022

    • Author(s)
      木下真也
    • Organizer
      応用解析研究会定例セミナー
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] The local well-posedness of the periodic Zakharov system2022

    • Author(s)
      Shinya Kinoshita
    • Organizer
      Stochastics and Nonlinear Partial Differential Equations
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] The local well-posedness of the periodic Zakharov system2022

    • Author(s)
      Shinya Kinoshita
    • Organizer
      9th East Asian Conference in Harmonic Analysis and Applications
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] The Zakharov-Kuznetsov equation in high dimensions:small initial data of critical regularity2021

    • Author(s)
      木下真也
    • Organizer
      RIMS共同研究 「線形および非線形分散型方程式の研究の進展」
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] 球対称な初期値を持つ非線形 Schrodinger 方程式の時間局所適切性2021

    • Author(s)
      木下真也
    • Organizer
      大阪大学微分方程式セミナー
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] ell-posedness of fractional NLS and semi-relativistic equations with Hartree type nonlinearity2021

    • Author(s)
      木下真也
    • Organizer
      Harmonic Analysis and Wave Phenomena
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] 二次の非線形項をもつ非線形 Schrodinger 方程式の時間局所適切性2021

    • Author(s)
      木下真也
    • Organizer
      九州関数方程式セミナー
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] 二次の非線形項をもつ非線形 Schrodinger 方程式の時間局所適切性2021

    • Author(s)
      木下真也
    • Organizer
      第23回調和解析中央大セミナー
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] Well-posedness of fractional NLS and semi-relativistic equations with Hartree type nonlinearity2021

    • Author(s)
      Shinya Kinoshita
    • Organizer
      13th ISAAC Congress 2021
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited

URL: 

Published: 2021-05-27   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi