• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Categorification of cohomological Donaldson--Thomas invariants

Research Project

Project/Area Number 22KJ0616
Project/Area Number (Other) 21J21118 (2021-2022)
Research Category

Grant-in-Aid for JSPS Fellows

Allocation TypeMulti-year Fund (2023)
Single-year Grants (2021-2022)
Section国内
Review Section Basic Section 11010:Algebra-related
Research InstitutionKyoto University (2023)
The University of Tokyo (2021-2022)

Principal Investigator

金城 翼  京都大学, 数理解析研究所, 助教

Project Period (FY) 2023-03-08 – 2024-03-31
Project Status Discontinued (Fiscal Year 2023)
Budget Amount *help
¥2,500,000 (Direct Cost: ¥2,500,000)
Fiscal Year 2023: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2022: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2021: ¥900,000 (Direct Cost: ¥900,000)
KeywordsDonaldson-Thomas理論 / モジュライ空間 / 導来代数幾何学 / 超局所層理論 / 幾何学的表現論 / 数え上げ幾何学 / 導来シンプレクティック幾何学 / Hall代数 / 不変量 / Higgs束
Outline of Research at the Start

三次元カラビヤウ多様体の連接層の数え上げ不変量であるDonaldson-Thomas不変量はコホモロジー的Donaldson-Thomas(CoDT)不変量と呼ばれる層理論的な圏化を持つ。この理論はフレア理論の複素類似であるため非常に深い理論が期待されているが、定義の難解さのため、その多くが未解明である。本研究では導来シンプレクティック幾何学や超局所層理論などの手法をを用いてCoDT理論の基礎を確立し、表現論やHiggs束のモジュライ空間との関連を明らかにすることを目指す。

Outline of Annual Research Achievements

本研究課題の主題は、コホモロジー的ドナルドソン・トーマス不変量の関手的な振る舞いに関するJoyce予想に進展を与えることであった。その方向の最も大きな研究実績として、Adeel Khan氏との共同研究でJoyce予想を余法型の場合に解決したことが挙げられる。この研究の帰結として、局所曲面と呼ばれる三次元カラビヤウ多様体に対するコホモロジー的ドナルドソン・トーマス不変量に代数構造を入れることが可能となった。今後、この代数構造は壁越え公式の圏論化を理解する上で非常に重要な役割を果たすと考えられる。この研究では証明のために柏原とSchapiraによる超局所層理論の導来幾何的な一般化を導入しており、これ自体興味深いものである。Khan氏との共同研究では導来化された超局所層理論の他の応用として仮想基本類の新しい構成を与えており、今後超局所的なアイデアにより新しい種類の数え上げ不変量が構成されることが期待される。

局所曲面のコホモロジー的ドナルドソン・トーマス不変量の代数構造を応用することで、K3曲面やより一般の二次元カラビヤウ代数曲面の連接層のモジュライスタックのボレル・ムーアホモロジーに余代数構造を構成した(Ben Davison氏との共同研究)。この余代数の構造を用いることで、局所K3局面のコホモロジー的ドナルドソン・トーマス不変量にヘッケ作用を構成することが可能になる。ヘッケ作用はK3曲面の連接層のモジュライ空間のミラー対称性を理解する上で重要な役割を果たすと期待される。

Report

(3 results)
  • 2023 Annual Research Report
  • 2022 Annual Research Report
  • 2021 Annual Research Report
  • Research Products

    (9 results)

All 2023 2022 2021 Other

All Int'l Joint Research (2 results) Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (5 results) (of which Int'l Joint Research: 4 results,  Invited: 5 results)

  • [Int'l Joint Research] Academia Sinica(中国)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] The University of Edinburgh(英国)

    • Related Report
      2023 Annual Research Report
  • [Journal Article] Global Critical Chart for Local Calabi-Yau Threefolds2023

    • Author(s)
      Kinjo Tasuki、Masuda Naruki
    • Journal Title

      International Mathematics Research Notices

      Volume: 2024 Issue: 5 Pages: 4062-4093

    • DOI

      10.1093/imrn/rnad135

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Dimensional reduction in cohomological Donaldson-Thomas theory2022

    • Author(s)
      Tasuki Kinjo
    • Journal Title

      Compositio Mathematica

      Volume: 158 Issue: 1 Pages: 123-167

    • DOI

      10.1112/s0010437x21007740

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Presentation] Microlocal techniques in enumerative geometry2023

    • Author(s)
      金城翼
    • Organizer
      Workshop on moduli spaces, virtual invariants and shifted symplectic structures
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Global critical chart for the moduli stack of G-Higgs bundles2023

    • Author(s)
      金城翼
    • Organizer
      Motives in moduli and representation theory
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Euler characteristic for stacks2023

    • Author(s)
      Tasuki Kinjo
    • Organizer
      Korea-Japan Conference in Algebraic Geometry
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Cohomological Donaldson-Thomas theory for 2-Calabi-Yau categories2022

    • Author(s)
      Tasuki Kinjo
    • Organizer
      Geometric representation theory and quantum topology
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 偏屈層を用いた仮想基本類の構成2021

    • Author(s)
      Tasuki Kinjo
    • Organizer
      Aspects of Mirror Symmetry 2021
    • Related Report
      2021 Annual Research Report
    • Invited

URL: 

Published: 2021-05-27   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi