Project/Area Number |
23241046
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Microdevices/Nanodevices
|
Research Institution | NTT Basic Research Laboratories |
Principal Investigator |
YAMAGUCHI Hiroshi 日本電信電話株式会社NTT物性科学基礎研究所, 量子電子物性研究部, 上席特別研究員 (60374071)
|
Co-Investigator(Kenkyū-buntansha) |
OKAMOTO Hajime 日本電信電話株式会社, NTT物性科学基礎研究所・量子電子物性研究部, 主任研究員 (20350465)
ONOMITSU Koji 日本電信電話株式会社, NTT物性科学基礎研究所・量子電子物性研究部, 主任研究員 (30350466)
MABOOB Imran 日本電信電話株式会社, NTT物性科学基礎研究所・量子電子物性研究部, 主任研究員 (80417097)
NAKANO Hayato 八戸工業高等専門学校, 電気情報工学科, 教授 (60393774)
|
Co-Investigator(Renkei-kenkyūsha) |
YAMAZAKI Kenji 日本電信電話株式会社, NTT物性科学基礎研究所・量子電子物性研究部, 主任研究員 (40393764)
YAMAGUCHI Toru 日本電信電話株式会社, NTT物性科学基礎研究所・量子電子物性研究部, 主任研究員 (30393763)
|
Project Period (FY) |
2011-04-01 – 2015-03-31
|
Project Status |
Completed (Fiscal Year 2014)
|
Budget Amount *help |
¥49,010,000 (Direct Cost: ¥37,700,000、Indirect Cost: ¥11,310,000)
Fiscal Year 2014: ¥7,670,000 (Direct Cost: ¥5,900,000、Indirect Cost: ¥1,770,000)
Fiscal Year 2013: ¥10,920,000 (Direct Cost: ¥8,400,000、Indirect Cost: ¥2,520,000)
Fiscal Year 2012: ¥14,170,000 (Direct Cost: ¥10,900,000、Indirect Cost: ¥3,270,000)
Fiscal Year 2011: ¥16,250,000 (Direct Cost: ¥12,500,000、Indirect Cost: ¥3,750,000)
|
Keywords | ナノメカニクス / マイクロメカニクス / ナノマシン / 非線形素子 / 化合物半導体 / マイクロマシン / マイクロ・ナノデバイス / 電子デバイス・機器 / 電子デバイス / 集積回路 / 新規デバイス / マイクロ |
Outline of Final Research Achievements |
We studied the nonlinear dynamics of mechanical resonators to find new physical phenomena and to develop novel-concept mechanical devices. We demonstrated new phonon dynamics, such like phonon lasing, parametric frequency conversion, and dynamic phononic crystal waveguide. The phonon lasing operation generates very clean mechanical oscillation using the similar principle as optical lasers. The parametric frequency conversion enables rapid transfer of mechanical oscillation between different mechanical modes, allowing the fast annihilation of mechanical vibrations. The dynamic phononic crystal waveguide makes it possible to switch the propagation of sound waves with electrical signals. We also demonstrated 2-mode squeezing, which can be applied to study quantum mechanical behavior of phonons in future. These results provide the possibility to use the mechanical resonators, which was so far used only as passive devices, as more important active devices in future.
|