• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Arithmetic study of automorphic forms of many variables by various method

Research Project

Project/Area Number 23244003
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionThe University of Tokyo

Principal Investigator

ODA Takayuki  東京大学, 数理(科)学研究科(研究院), 教授 (10109415)

Co-Investigator(Renkei-kenkyūsha) HIRONAKA Yumiko  早稲田大学, 教育学部, 教授 (10153652)
WAKATSUKI Satoshi  金沢大学, 数物系, 准教授 (10432121)
KOSEKI Harutaka  三重大学, 教育学部, 教授 (60234770)
HAYATA Takahiro  山形大学, 大学院理工学研究科, 准教授 (50312757)
TSUZUKI Masao  上智大学, 理工学部, 准教授 (80296946)
HIRANO Miki  愛媛大学, 大学院理工学研究科, 教授 (80314946)
GON Yasuro  九州大学, 数理学研究院, 准教授 (30302508)
ISHI Taku  成蹊大学, 理工学部, 准教授 (60406650)
Project Period (FY) 2011-04-01 – 2015-03-31
Project Status Completed (Fiscal Year 2014)
Budget Amount *help
¥30,810,000 (Direct Cost: ¥23,700,000、Indirect Cost: ¥7,110,000)
Fiscal Year 2014: ¥7,410,000 (Direct Cost: ¥5,700,000、Indirect Cost: ¥1,710,000)
Fiscal Year 2013: ¥7,410,000 (Direct Cost: ¥5,700,000、Indirect Cost: ¥1,710,000)
Fiscal Year 2012: ¥7,410,000 (Direct Cost: ¥5,700,000、Indirect Cost: ¥1,710,000)
Fiscal Year 2011: ¥8,580,000 (Direct Cost: ¥6,600,000、Indirect Cost: ¥1,980,000)
KeywordsAutomorphic forms / spherical functions / Green functions / Whittaker function / modular forms / automorphic forms / Green currents / discrete series / fundamental domain / Whittaker functions / hypergeometric functions / 保型型式 / 不連続群 / Lie群上の球関数 / 多変数超幾何関数
Outline of Final Research Achievements

We obtained some fundamental results on the integral expressions and power series expressions of the A-radial parts of either Whittaker functions or spherical functions for the standard representations (i.e principal series and/or discrete series representations) of the Lie groups, GL(n,R), Sp(2,R) and SU(3,1).The formulas of Whittaker functions of non-spherical principal series put a period on the research history beginning from the studies of D. Bump and others, and we can expect various applications of this result (this is a joint works with Taku Ishii of Seikei Univ.). We obtained an explicit formulas of the matrix coefficients of the large discrete series of the Lie groups SU(2,1), SU(3,1) (joint wrok with T.Hayata, H. Koseki, and T. Miyazaki).This result gives a suggestion for study of the reproducing kernels. We push forward the investigation oh the cell-decomposition of Siegel-Gottschling fundamental domain of genus 2 (the first paper was a joint paper with T. Hayata).

Report

(5 results)
  • 2014 Annual Research Report   Final Research Report ( PDF )
  • 2013 Annual Research Report
  • 2012 Annual Research Report
  • 2011 Annual Research Report
  • Research Products

    (6 results)

All 2014 2012 Other

All Journal Article (3 results) (of which Peer Reviewed: 3 results) Presentation (2 results) (of which Invited: 1 results) Book (1 results)

  • [Journal Article] Calculus of principal series Whittaker functions on SL(n,R).2014

    • Author(s)
      Ishii, Taku; Oda, Takayuki
    • Journal Title

      J. Funct. Anal.

      Volume: 266 Issue: 3 Pages: 1286-1372

    • DOI

      10.1016/j.jfa.2013.11.020

    • Related Report
      2014 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Matrix coefficients of the large discrete series representations of Sp(2;R) as hypergeometric series of two variables2012

    • Author(s)
      T. Oa
    • Journal Title

      Nagoya Math.J.

      Volume: 208

    • Related Report
      2012 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Zero Cells of the Siegel-Gottschling Fundamental Domain of Degree 22012

    • Author(s)
      Takahiro Hayata
    • Journal Title

      Experimental Mathematics,

      Volume: 21(3) Issue: 3 Pages: 266-279

    • DOI

      10.1080/10586458.2012.653273

    • Related Report
      2012 Annual Research Report 2011 Annual Research Report
    • Peer Reviewed
  • [Presentation] ”Zero cells of the Siegel-Gottschling fumdamental domain of degree 2”

    • Author(s)
      織田孝幸
    • Organizer
      The International Conference ”Polynomial Com- 1 puter Algebra”, Euler International Mathematical Institute
    • Place of Presentation
      Saint-Petersburg, Russia
    • Related Report
      2011 Annual Research Report
  • [Presentation] ”Cell decomposition of the fundamental domain of the Siegel modular group of genus two”, and an application of the language ”Ruby

    • Author(s)
      織田孝幸
    • Organizer
      New developments in Modern Number Theory and Applied Mathematicd and Special Contributions of Students and E-learning
    • Place of Presentation
      Muscat, Sultanate Oman
    • Related Report
      2011 Annual Research Report
    • Invited
  • [Book] Automorphic forms, research in Number Theory from Oman2014

    • Author(s)
      Takayuki Oda
    • Publisher
      Springer
    • Related Report
      2013 Annual Research Report

URL: 

Published: 2011-06-18   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi