Project/Area Number |
23300061
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Intelligent informatics
|
Research Institution | University of Hyogo |
Principal Investigator |
SHIN Yoshihiro 兵庫県立大学, 応用情報科学研究科, 教授 (60523587)
|
Co-Investigator(Kenkyū-buntansha) |
OKAMOTO Hiroshi 独立行政法人理化学研究所, 脳回路機能理論研究チーム, 研究員 (00374067)
ARIMURA Hiroki 北海道大学, 情報科学研究科, 教授 (20222763)
SAKAMOTO Hiroshi 九州工業大学, 情報工学研究院, 教授 (50315123)
KUBOYAMA Tetsuji 学習院大学, 計算機センター, 教授 (80302660)
CUTURI Marco 京都大学, 情報学研究科, 准教授 (80597344)
|
Project Period (FY) |
2011-04-01 – 2014-03-31
|
Project Status |
Completed (Fiscal Year 2013)
|
Budget Amount *help |
¥19,500,000 (Direct Cost: ¥15,000,000、Indirect Cost: ¥4,500,000)
Fiscal Year 2013: ¥5,720,000 (Direct Cost: ¥4,400,000、Indirect Cost: ¥1,320,000)
Fiscal Year 2012: ¥5,590,000 (Direct Cost: ¥4,300,000、Indirect Cost: ¥1,290,000)
Fiscal Year 2011: ¥8,190,000 (Direct Cost: ¥6,300,000、Indirect Cost: ¥1,890,000)
|
Keywords | 機械学習 / 構造化データ / カーネル法 / 動的計画法 / 木 / 離散構造 / グラフ / 木構造データ / データマイニング / アルゴリズム / 離散構造データ解析 |
Research Abstract |
Kernel method is an important field of machine learning research and allows us to leverage information assets like big data to make useful predictions in various applications. In addition to vector data,there exist huge amount of data that have structures. For example, DNA is an array of nucleotides; Protein, parse trees and XML documents are naturally structured as trees; Various kinds of networks are represented using the graph structure. In this regard, this project aims to establish a theory of kernels for structured data and practical techniques to apply kernels to structured data of the real applications. Specifically, we have developed a mathematical theory to investigate positive definiteness of kernels and various types of kernels that deal with a wide variety of structured data. Furthermore, we have developed a utility to compute kernels and have publicized it to researchers in the field of machine learning over the Internet.
|