Monomial ideals in polynomial rings
Project/Area Number |
23540060
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Meiji University |
Principal Investigator |
|
Research Collaborator |
Nguen Cong Minh
HIGASHIDAIRA Hirotaka
KAWAMURA Masaya
|
Project Period (FY) |
2011-04-28 – 2017-03-31
|
Project Status |
Completed (Fiscal Year 2016)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2015: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2014: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2013: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2012: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2011: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
|
Keywords | 単項式イデアル / Stanley-Reisner 環 / Lefschetz 性 / Cohen-Macaulay / グラフ / 随伴次数環 / 三角圏 / 導来圏 / Stanley-Resner 環 / Lefschetz 性 / quiver / almost split sequence / Buchsbaum 性 / Stanley-Reisner イデアル / 辺イデアル / Lefschetz性 / Artin次数環 / 完全交叉 / regularity / shellable / vertex decomposable / 2部グラフ / sequentially C-M / Cohen-Macaulay 環 / Buchsbaum 環 / k-Buchsbaum 環 / 局所コホモロジー / 被約コホモロジー / マトロイド |
Outline of Final Research Achievements |
The purpose of the research is to investigate the relation between the property of simplicial complexes in Discrete Mathematics and that of Stanley-Reisner rings in Commutative Algebra. As a result, we characterize the k-Buchsbaum property of the residue class rings of the polynomial ring by the power of Stanley-Reisner ideals.
|
Report
(7 results)
Research Products
(3 results)