• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Infinitely generated objects (1-2 dimensional wild spaces and fundamental groups)

Research Project

Project/Area Number 23540110
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionWaseda University

Principal Investigator

Eda Katsuya  早稲田大学, 理工学術院, 教授 (90015826)

Project Period (FY) 2011-04-28 – 2015-03-31
Project Status Completed (Fiscal Year 2015)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2015: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2014: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2013: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2012: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2011: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywordsfundamental group / wild spaces / one dimensional / two dimensional / Peano continua / singular homology group / topological group / grope group / singular homology / uncountable group / covering homomorphism / overlay / wild space / uncountable groups / one dimension / inverse limit / free groups / grope groups / Hawaiian Earring / n-slender / solenoid / cover
Outline of Final Research Achievements

We studied on the subjects (1) 2 dimensional nonaspherical cell-like continua [2,3]; (2) The inverse limits of finitely generated free groups [4]; (3) Grope groups [5] (4) Covering maps over topological groups [6]; (5) Singular homology groups of one-dimensional Peano continua [1].

(1) We propose four constructions of spaces which produce 2 dimensional nonaspherical cell-like continua. There exists a Peano continuum for each two of them which shows the difference of the two constructions. (2) The inverse limits of inverse sequences of free groups of finite rank are free groups of finite rank or four non-isomrphic groups. (3) If there exists a nontrivial homomorphism from the minimal grope group to another grope group, then the grope has a binary braching part as the minimal grope. (4) There exist infinite sheeted covering maps over any solenoids. (5) Singular homology groups of one-dimensional Peano continua are free abelian groups of finite rank or that of the Hawaiian earring.

Report

(5 results)
  • 2015 Final Research Report ( PDF )
  • 2014 Annual Research Report
  • 2013 Research-status Report
  • 2012 Research-status Report
  • 2011 Research-status Report
  • Research Products

    (13 results)

All 2015 2014 2013 2011

All Journal Article (9 results) (of which Peer Reviewed: 9 results) Presentation (4 results) (of which Invited: 1 results)

  • [Journal Article] The classification of the inverse limits of free groups of finite rank2013

    • Author(s)
      K. Eda and J. Nakamura
    • Journal Title

      Bull. London Math. Soc.

      Volume: 45 Issue: 4 Pages: 671-676

    • DOI

      10.1112/blms/bds123

    • Related Report
      2013 Research-status Report 2012 Research-status Report
    • Peer Reviewed
  • [Journal Article] On Snake cones, alternating cones and related constructions2013

    • Author(s)
      K. Eda, U. Karimov, Dusan Repovs and A. Zastrow
    • Journal Title

      Glasnik Mate.

      Volume: 48(68) Issue: 1 Pages: 155-135

    • DOI

      10.3336/gm.48.1.11

    • Related Report
      2013 Research-status Report
    • Peer Reviewed
  • [Journal Article] Maps from the minimal grope to arbitrary gropes2013

    • Author(s)
      M. Cencelj, K. Eda, and Ales Vavpetic
    • Journal Title

      Inter. Jour. Algebra Comp.

      Volume: 23 Issue: 03 Pages: 503-519

    • DOI

      10.1142/s0218196713500070

    • Related Report
      2013 Research-status Report
    • Peer Reviewed
  • [Journal Article] On Snake cones, alternating cones and related constructions2013

    • Author(s)
      K. Eda, U. Karimov, D. Repovs and A. Zastrow
    • Journal Title

      Glasnik Mate.

      Volume: -

    • Related Report
      2012 Research-status Report
    • Peer Reviewed
  • [Journal Article] Maps from the minimal grope to arbitrary gropes2013

    • Author(s)
      M. Cencelj, K. Eda, and A. Vavpetic
    • Journal Title

      Inter. Jour. Algebra Comp

      Volume: -

    • Related Report
      2012 Research-status Report
    • Peer Reviewed
  • [Journal Article] Covering maps over solenoids which are not covering homomorphisms2013

    • Author(s)
      K. Eda and V. Matijevic
    • Journal Title

      Fund. Math.

      Volume: -

    • Related Report
      2012 Research-status Report
    • Peer Reviewed
  • [Journal Article] On 2-dimensional nonaspherical cell-like Peano continua: a simple approach2013

    • Author(s)
      K. Eda, U. Karimov and D. Repovs
    • Journal Title

      Meditarranean J. Math.

      Volume: 10

    • Related Report
      2012 Research-status Report
    • Peer Reviewed
  • [Journal Article] Atomic property of the fundamental group of the Hawaiian earring and wild Peano continua2011

    • Author(s)
      K. Eda
    • Journal Title

      J. Math. Soc. Japan

      Volume: 63

    • Related Report
      2011 Research-status Report
    • Peer Reviewed
  • [Journal Article] On the Singular Homology of One Class of Simply-connected Cell-like Spaces2011

    • Author(s)
      K. Eda, Umed H. Karimov and Dusan Repovs
    • Journal Title

      Meditarranean J. Math.

      Volume: 8 Pages: 153-160

    • Related Report
      2011 Research-status Report
    • Peer Reviewed
  • [Presentation] Covering maps over topological groups2015

    • Author(s)
      Katsuya Eda
    • Organizer
      Dubrovnik VIII, Geometric Topology, Geometric Group Theory and Dynamical systems
    • Place of Presentation
      Inter-University center Dubrovnik
    • Year and Date
      2015-06-22 – 2015-06-26
    • Related Report
      2014 Annual Research Report
    • Invited
  • [Presentation] Singular homology of Peano continua2014

    • Author(s)
      Katsuya Eda
    • Organizer
      DMV-PTM 2014 Poznan
    • Place of Presentation
      University of Poznan
    • Year and Date
      2014-09-18
    • Related Report
      2014 Annual Research Report
  • [Presentation] Atomic property of the fundamental group of the Hawaiian earring and wild Peano continua2011

    • Author(s)
      K. Eda
    • Organizer
      Dubrovnik VII - Geometric Topology
    • Place of Presentation
      Dubrovnik
    • Related Report
      2011 Research-status Report
  • [Presentation] Group theoretic properties for wild algebraic topology2011

    • Author(s)
      K. Eda
    • Organizer
      Workshop on Topology of Wild Spaces and Fractals(招待講演)
    • Place of Presentation
      Strobl
    • Related Report
      2011 Research-status Report

URL: 

Published: 2011-08-05   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi