• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on finite element methods for wave problems in unbounded domains and development of associated FEM softwares

Research Project

Project/Area Number 23540127
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionThe University of Electro-Communications

Principal Investigator

KOYAMA Daisuke  電気通信大学, 情報理工学(系)研究科, 助教 (60251708)

Project Period (FY) 2011 – 2013
Project Status Completed (Fiscal Year 2013)
Budget Amount *help
¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2013: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2012: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2011: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords領域分割法 / 最適化シュワルツ法 / 不連続ガレルキン有限要素法 / 波動問題 / 平面弾性問題 / コルンの不等式 / 外部問題 / 外部ヘルムホルツ問題 / シュワルツ法 / 有限要素法 / ヘルムホルツ方程式 / 多重散乱問題 / ベッセル関数 / 誤差解析 / 音響散乱問題 / 線形水波散乱問題
Research Abstract

We need numerical simulations for construction of ocean structures and for development of high-performance sonar. First we mathematically established the validity of a simulation technique using the method called "finite element method." Next we obtained an optimal parameter which is used in the numerical simulation to speed up the simulations. We observed that the optimal parameter is effective for specific problems. Finally we mathematically proved the inequality called "Korn's inequality", which plays an essential role in analysis for validating a new simulation technique called "Hybridized discontinuous Galerkin finite element method" which will be used in numerical simulations of seismic waves, etc.

Report

(4 results)
  • 2013 Annual Research Report   Final Research Report ( PDF )
  • 2012 Research-status Report
  • 2011 Research-status Report
  • Research Products

    (12 results)

All 2014 2013 2012

All Journal Article (4 results) (of which Peer Reviewed: 4 results) Presentation (8 results)

  • [Journal Article] Strong L^p convergence associated with Rellich-type discrete compactness for ciscontinuous Galerkin FEM2014

    • Author(s)
      Fumio Kikuchi and Daisuke Koyama
    • Journal Title

      JSIAM Letters

      Volume: Vol.6(掲載確定)

    • Related Report
      2013 Annual Research Report 2013 Final Research Report
    • Peer Reviewed
  • [Journal Article] An a priori error estimate of the Dirichlet-to-Neumann finite element method for multiple scattering problems2014

    • Author(s)
      Daisuke Koyama
    • Journal Title

      Japan Journal of Industrial and Applied Mathematics

      Volume: Vol.31 Issue: 1 Pages: 165-192

    • DOI

      10.1007/s13160-013-0129-x

    • NAID

      210000162843

    • Related Report
      2013 Annual Research Report 2013 Final Research Report
    • Peer Reviewed
  • [Journal Article] 停留した物体による線形水波散乱問題に対するDtN 有限要素法の誤差解析2012

    • Author(s)
      小山大介, 瀬戸秀幸
    • Journal Title

      日本応用数理学会論文誌

      Volume: 22巻 Pages: 341-382

    • Related Report
      2013 Final Research Report
    • Peer Reviewed
  • [Journal Article] 停留した物体による線形水波散乱問題に対するDtN有限要素法の誤差解析2012

    • Author(s)
      小山大介,瀬戸秀幸
    • Journal Title

      日本応用数理学会論文誌

      Volume: 22

    • Related Report
      2012 Research-status Report
    • Peer Reviewed
  • [Presentation] 平面弾性問題に対するリフティング項付きハイブリッド型DGFEM2014

    • Author(s)
      小山大介, 菊地文雄
    • Organizer
      第10回日本応用数理学会 研究部会連合発表会 科学技術計算と数値解析研究部会
    • Place of Presentation
      京都大学吉田キャンパス
    • Related Report
      2013 Final Research Report
  • [Presentation] 平面弾性問題に対するリフティング項付きハイブリッド型DGFEM2014

    • Author(s)
      小山大介,菊地文雄
    • Organizer
      第10回 日本応用数理学会 研究部会連合発表会 科学技術計算と数値解析 研究部会
    • Place of Presentation
      京都大学吉田キャンパス
    • Related Report
      2013 Annual Research Report
  • [Presentation] 円外領域におけるHelmholtz問題に対する最適化Schwarz 法2013

    • Author(s)
      小山大介
    • Organizer
      RIMS 研究集会「応用数理と計算科学における理論と応用の融合」
    • Place of Presentation
      京都大学数理解析研究所
    • Related Report
      2013 Final Research Report
  • [Presentation] Korn's inequality for a hybridized discontinuous Galerkin FEM with lifting operator2013

    • Author(s)
      Daisuke Koyama and Fumio Kikuchi
    • Organizer
      日本数学会2013年度秋季総合分科会 応用数学分科会
    • Place of Presentation
      愛媛大学
    • Related Report
      2013 Annual Research Report 2013 Final Research Report
  • [Presentation] An optimized Schwarz method for exterior Helmholtz problems2013

    • Author(s)
      Daisuke Koyama
    • Organizer
      22nd International Conference on Domain Decomposition Methods (DD22)
    • Place of Presentation
      Universita della Svizzera italiana - Lugano, Switzerland
    • Related Report
      2013 Annual Research Report 2013 Final Research Report
  • [Presentation] 円外領域におけるHelmholtz問題に対する最適化Schwarz法2013

    • Author(s)
      小山大介
    • Organizer
      RIMS研究集会「応用数理と計算科学における理論と応用の融合」
    • Place of Presentation
      京都大学数理解析研究所
    • Related Report
      2013 Annual Research Report
  • [Presentation] An optimized Schwarz method for acoustic radiation problems2012

    • Author(s)
      小山大介
    • Organizer
      日本数学会
    • Place of Presentation
      九州大学伊都キャンパス
    • Year and Date
      2012-09-21
    • Related Report
      2013 Final Research Report 2012 Research-status Report
  • [Presentation] Strong $L^p$ convergence associated with Rellich-type discrete compactness for discontinuous Galerkin FEM2012

    • Author(s)
      菊地文雄,小山大介
    • Organizer
      日本数学会
    • Place of Presentation
      九州大学伊都キャンパス
    • Related Report
      2012 Research-status Report

URL: 

Published: 2011-08-05   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi