Analysis of Dynamical Structure by Considering the Randomness of Insertion of Errors and Development for Numerical Analysis on Conservative System
Project/Area Number |
23540129
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
General mathematics (including Probability theory/Statistical mathematics)
|
Research Institution | Kanazawa University |
Principal Investigator |
HATAUE Itaru 金沢大学, 電子情報学系, 教授 (50218476)
|
Co-Investigator(Kenkyū-buntansha) |
ITO Hidekazu 金沢大学, 数物科学系, 教授 (90159905)
SAISHO Yasumasa 広島大学, 工学(系)研究科(研究院), 准教授 (70195973)
|
Project Period (FY) |
2011 – 2013
|
Project Status |
Completed (Fiscal Year 2013)
|
Budget Amount *help |
¥5,070,000 (Direct Cost: ¥3,900,000、Indirect Cost: ¥1,170,000)
Fiscal Year 2013: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2012: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2011: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
|
Keywords | ランダムネス / 誤差移入 / オイラー方程式 / ナヴィエーストークス方程式 / 数値実験 / 確率モデル / 分岐過程 / 圧縮性流体 / 衝撃波 / ランダム項 / 非圧縮性流体 / キャビティ流れ / ロトカーボルテラ方程式 / 確率差分方程式 / バーガーズ方程式 / ハミルトン系 / 圧縮性流体シミュレーション |
Research Abstract |
In this research, we considered the dependence of the numerical simulation results on inserted randomness. We adopted compressible fluid equations as calculation models. It is difficult to apply the statistical approach to the conservative system because it is structurally unstable. We calculated the statistical data of position of fluctuating shock wave induced by the forcibly added randomness in order to investigate the dependence of simulation results on the random errors. When the amplitude of randomness becomes relatively large, it is clarified that the mean position of shock wave moves toward leeward region. On the other hand, we showed that the forcibly added randomness affects the bifurcation process in the case of dissipative system. These results obtained in the present research give researchers significant information about the dependence of reliability of numerical results on random erros.
|
Report
(4 results)
Research Products
(52 results)