Spectrum of Schroedinger operators with periodic or random magnetic fields
Project/Area Number |
23540212
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Basic analysis
|
Research Institution | Ehime University |
Principal Investigator |
NOMURA YUJI 愛媛大学, 理工学研究科, 准教授 (40282818)
|
Co-Investigator(Renkei-kenkyūsha) |
ITOH Hiroshi 愛媛大学, 大学院・理工学研究科, 教授 (90243005)
MINE Takuya 京都工芸繊維大学, 工芸科学研究科, 准教授 (90378597)
|
Project Period (FY) |
2011 – 2013
|
Project Status |
Completed (Fiscal Year 2013)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2013: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2012: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2011: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | シュレーディンガー作用素 / スペクトル / 離散固有値 / 埋め込まれた固有値 / レゾナンス / Aharonov-Bohm磁場 / ランダウ準位 / 双曲平面 / 複素固有値 / 上半平面 / 離散群 |
Research Abstract |
We consider the magnetic Schroedinger operators on the Poincare upper half plane with constant Gaussian curvature -1. We assume the magnetic fields is given by the sum of a constant field and the Dirac delta measures placed on some lattice. We give a sufficient condition for each Landau level to be an infinitely degenerated eigenvalue. We also prove the lowest Landau level is not an eigenvalue if the above condition fails.
|
Report
(4 results)
Research Products
(18 results)