Construction of the theory of variation applicable to shape optimization problems and fracture, whose application to problems in engineering.
Project/Area Number |
23540258
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Global analysis
|
Research Institution | Hiroshima Kokusai Gakuin University |
Principal Investigator |
OHTSUKA Kohji 広島国際学院大学, 総合教育センター, 教授 (30141683)
|
Co-Investigator(Kenkyū-buntansha) |
AZEGAMI Hideyuki 名古屋大学, 情報科学研究科, 教授 (70175876)
KIMURA Masato 金沢大学, 数物科学系, 教授 (70263358)
|
Project Period (FY) |
2011 – 2013
|
Project Status |
Completed (Fiscal Year 2013)
|
Budget Amount *help |
¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2013: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2012: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2011: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | 変分法 / 形状最適化問題 / 特異性を持つ楕円型境界値問題 / 有限要素法 / 一般J積分 / 破壊現象 / 関数方程式 / 数理思考プログラミング / 一般J積分 / 関数方程式論 / 数理指向プログラミング / 最適形状設計問題 / H1勾配法 / 理論研究 / 数値解析 / 変分理論 / 有限要素解析システムFreeFem++ / 「国際情報交流」フランス |
Research Abstract |
The results of research are the following. (1) In theory of generalized J-integral (GJ-integral), there is the result called Main Theorem, that is, the variation of energies with respect to the perturbation of the singular points is expressed as GJ-integral. In this research, it is proved that Main Theorem hold in wide nonlinear problems with Professor Kimura. (2) Combining GJ-integral and H1-gradient method proposed by Professor Azegami, we could show that the shape optimization problems with singularities are solved theoretically and numerically. (3) It was shown that FreeFem++ developed by Professor F.Hecht at the Laboratory Jacques-Louis Lions in Paris VI University is the finite element solver for boundary value problems by mathematical thinking and programming.
|
Report
(4 results)
Research Products
(80 results)