• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

An investigation of the continuation problem for the nonlinear Schroedinger equations beyond the singularity

Research Project

Project/Area Number 23654052
Research Category

Grant-in-Aid for Challenging Exploratory Research

Allocation TypeMulti-year Fund
Research Field Basic analysis
Research InstitutionMeiji University (2013-2014)
Osaka University (2011-2012)

Principal Investigator

NAWA Hayato  明治大学, 理工学部, 教授 (90218066)

Co-Investigator(Kenkyū-buntansha) ISHIWATA Tetsuya  芝浦工業大学, システム工学部, 教授 (50334917)
Research Collaborator FIBICH Gadi  Tel Aviv University, 教授
SULEM Catherine  University Tronto, 教授
Project Period (FY) 2011-04-28 – 2015-03-31
Project Status Completed (Fiscal Year 2014)
Budget Amount *help
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2013: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2012: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2011: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords非線形シュレーディンガー方程式 / 爆発解 / ネルソン拡散過程 / 曲線の運動 / クリスタライン / 等位面 / 爆発速度 / ネルソン拡散課程 / 曲率流 / 等高面 / 国際研究者交流(イスラエル) / 解の爆発 / 非線形偏微分放映式 / 特異点 / 爆発解の延長 / シュレーディンガー方程式
Outline of Final Research Achievements

This project was devoted to the study of the continuation problem of blowup solutions of the pseudo-conformally invariant nonlinear Schroedinger equation beyond the singularity. We tried to establish a rigorous mathematical concept to extend blowup solutions beyond the blowup time so that we investigated the precise behavior of the solution near the blowup time by means of the Nelson diffusion as well as a system of degenerate ordinary differential equations which had been found during the preparation of this project: the system of ODE describes the behavior of points in a level set of the square of the absolute value of the solution. Although we could not succeed to establish a significant concept of extending the blowup solutions, we obtained an estimate on the blowup rate for a class of blowup solutions and learned the importance of the numerical study to get an idea which lead us to a new KAKENHI project investing the blowup problem including other type of evolutional equations.

Report

(5 results)
  • 2014 Annual Research Report   Final Research Report ( PDF )
  • 2013 Research-status Report
  • 2012 Research-status Report
  • 2011 Research-status Report
  • Research Products

    (31 results)

All 2015 2014 2013 2012 2011 Other

All Journal Article (12 results) (of which Peer Reviewed: 11 results,  Open Access: 1 results) Presentation (19 results) (of which Invited: 11 results)

  • [Journal Article] Motion of spiral-shaped polygonal curves by nonlinear crystalline motion with a rotating tip motion2015

    • Author(s)
      T. Ishiwata
    • Journal Title

      Special issues of MATHEMATICA BOHEMICA dedicated to Equadiff 13

      Volume: 未定

    • Related Report
      2014 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Some features for blow-up solutions of a nonlinear parabolic equations2015

    • Author(s)
      K. Anada and T. Ishiwata
    • Journal Title

      IAENG International Journal of Applied Mathematics

      Volume: 未定

    • Related Report
      2014 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On spiral solutions to generalized crystalline motion with a rotating tip motion2015

    • Author(s)
      T. Ishiwata
    • Journal Title

      DCDS-S

      Volume: 未定

    • Related Report
      2014 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Crystalline motion of spiral-shaped polygonal curves with a tip motion2014

    • Author(s)
      Tetsuya Ishiwata
    • Journal Title

      Discrete and Continuous Dynamical Systems, Ser. S

      Volume: vol 7, no 1 Issue: 1 Pages: 53-62

    • DOI

      10.3934/dcdss.2014.7.53

    • Related Report
      2013 Research-status Report
    • Peer Reviewed
  • [Journal Article] Motion of spiral-shaped polygonal curves by nonlinear crystalline motion with a rotating tip motion2014

    • Author(s)
      Tetsuya Ishiwata
    • Journal Title

      MATHEMATICA BOHEMICA

      Volume: 未定

    • Related Report
      2013 Research-status Report
    • Peer Reviewed
  • [Journal Article] Existence of a ground state and scattering for a nonlinear Schrodinger equation with critical growth2013

    • Author(s)
      Takafumi Akahori, Slim Ibrahim, Hiroaki Kikuchi, Hayato Nawa
    • Journal Title

      Selecta Mathematica, new series

      Volume: vol 19, issue 2 Issue: 2 Pages: 545-609

    • DOI

      10.1007/s00029-012-0103-5

    • Related Report
      2013 Research-status Report 2012 Research-status Report
    • Peer Reviewed
  • [Journal Article] A fast blow-up solution and degenerate pinching arising in an anisotropic crystalline motion2013

    • Author(s)
      T. Ishiwata and S. Yazaki
    • Journal Title

      Discrete Contin. Dynam. Systems A

      Volume: 34, Issue 5 Issue: 5 Pages: 2069-2090

    • DOI

      10.3934/dcds.2014.34.2069

    • Related Report
      2013 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Nelson diffusions and nonlinear Schrodinger equations2013

    • Author(s)
      H. Nawa
    • Journal Title

      RIMS Kokyuroku ``Stochastic processes and statistical phenomena behind PDEs''

      Volume: 1823

    • NAID

      120006861700

    • Related Report
      2012 Research-status Report
  • [Journal Article] Scattering and blowup problems for a class of nonlinear Schrodinger equations2012

    • Author(s)
      T.Akahori, H.Kikuchi, H.Nawa,
    • Journal Title

      Differential and Integral Equations

      Volume: vol25, no 11-12

    • Related Report
      2012 Research-status Report
    • Peer Reviewed
  • [Journal Article] T. Ishiwata, K. Kumazaki2012

    • Author(s)
      Structure-preserving finite difference scheme for vortex filament motion
    • Journal Title

      Proceedings of ALGORITMY

      Volume: -

    • Related Report
      2012 Research-status Report
    • Peer Reviewed
  • [Journal Article] Existence of a ground state and blow-up problem for a nonlinear Schr\"odinger equation with critical growth2012

    • Author(s)
      T. Akahori, S. Ibrahim, H. Kikuchi, H. Nawa
    • Journal Title

      Differential and Integral Equations

      Volume: 25

    • Related Report
      2011 Research-status Report
    • Peer Reviewed
  • [Journal Article] Motion of polygonal curved fronts by crystalline motion: V-shaped solutions and eventual monotonicity,2011

    • Author(s)
      T. Ishiwata
    • Journal Title

      Discrete and Continuous Dynamical Systems, Suplement

      Volume: 1

    • Related Report
      2011 Research-status Report
    • Peer Reviewed
  • [Presentation] On the size of blow‐up set of type II blow‐up solutions to some quasilinear parabolilc equation2015

    • Author(s)
      Tetsuya Ishiwata
    • Organizer
      2015 NCTS Workshop on Applied Mathematics
    • Place of Presentation
      Science Hall, Tansui Campus, Tankang University
    • Year and Date
      2015-03-05
    • Related Report
      2014 Annual Research Report
    • Invited
  • [Presentation] Nonlinear Schroedinger equations and Nelson diffusions2015

    • Author(s)
      名和 範人
    • Organizer
      北陸応用数理研究会
    • Place of Presentation
      金沢大学
    • Year and Date
      2015-02-21
    • Related Report
      2014 Annual Research Report
    • Invited
  • [Presentation] Motion of polygonal curves by crystalline curvature flow2014

    • Author(s)
      石渡 哲哉
    • Organizer
      日本数学会応用数学分科会 スペシャルセッション「移動境界問題の数理解析」
    • Place of Presentation
      広島大学
    • Year and Date
      2014-09-27
    • Related Report
      2014 Annual Research Report
    • Invited
  • [Presentation] Motion of polygonal curves by area-preserving crystalline curvature flow,2014

    • Author(s)
      Tetsuya Ishiwata
    • Organizer
      2nd Slovak-Japan Conference on Applied Mathematics
    • Place of Presentation
      Hotel La Perla, Cerova vrchovina, Slovakia
    • Year and Date
      2014-09-16
    • Related Report
      2014 Annual Research Report
    • Invited
  • [Presentation] Nonlinear Schroedinger equations and Nelson diffusions2014

    • Author(s)
      名和 範人
    • Organizer
      第5回「ハミルトン系のその周辺」研究集会
    • Place of Presentation
      金沢大学
    • Year and Date
      2014-05-29
    • Related Report
      2014 Annual Research Report
    • Invited
  • [Presentation] クリスタライン曲率流による折れ線曲線の運動2012

    • Author(s)
      石渡 哲哉
    • Organizer
      偏微分方程式の最近の話題2012 in 別府(招待講演)
    • Place of Presentation
      別府国際コンベンションセンター(大分県)
    • Related Report
      2011 Research-status Report
  • [Presentation] 非線形 Schr\"odinger 方程式が記述する世界 - 変分構造,特異点,基底状態 -2011

    • Author(s)
      名和 範人
    • Organizer
      研究集会「乱流現象及び非平衡系の多様性と普遍性」(招待講演)
    • Place of Presentation
      九州大学応用力学研究所(福岡県)
    • Related Report
      2011 Research-status Report
  • [Presentation] Nelson 拡散過程と非線形Schr\"odinger方程式2011

    • Author(s)
      名和 範人
    • Organizer
      RIMS 共同研究「偏微分方程式の背後にある確率過程と解の族が示す統計力学的な現象の解析」(招待講演)
    • Place of Presentation
      京都大学数理解析研究所(京都府)
    • Related Report
      2011 Research-status Report
  • [Presentation] Behavior of Polygonal Curves by Crystalline Curvature Flow2011

    • Author(s)
      T. Ishiwata
    • Organizer
      Workshop on Nonlinear Partial Differential Equations(招待講演)
    • Place of Presentation
      Dept of Math and Center of PDE, East China Normal University, 上海(中国)
    • Related Report
      2011 Research-status Report
  • [Presentation] Structure-preserving finite difference scheme for the Landau-Lifshitz equation

    • Author(s)
      Tetsuya Ishiwata
    • Organizer
      EASIAM 2013
    • Place of Presentation
      インドネシア
    • Related Report
      2013 Research-status Report
  • [Presentation] Structure-preserving finite difference scheme for some sphere-valued partial differential equations

    • Author(s)
      Tetsuya Ishiwata
    • Organizer
      The 38th Sapporo Symposium on Partial Differential Equations
    • Place of Presentation
      北海道大学
    • Related Report
      2013 Research-status Report
    • Invited
  • [Presentation] Spiral-Shaped Solutions to Crystalline Motion with a Moving Tip

    • Author(s)
      Tetsuya Ishiwata
    • Organizer
      Equadiff 13
    • Place of Presentation
      プラハ(チェコ)
    • Related Report
      2013 Research-status Report
  • [Presentation] Behavior of polygonal curves by crystalline curvature flow

    • Author(s)
      Tetsuya Ishiwata
    • Organizer
      Workshop on Free Boundaries in Laplacian Growth Phenomena and Related Topics, Kawai Hall, Tohoku University, Oct. 15, 2013.
    • Place of Presentation
      東北大学
    • Related Report
      2013 Research-status Report
    • Invited
  • [Presentation] Spiral-shaped solutions to crystalline curvature flow with a moving tip,

    • Author(s)
      Tetsuya Ishiwata
    • Organizer
      日本数学会秋季総合分科会, 応用数学分科会
    • Place of Presentation
      愛媛大学
    • Related Report
      2013 Research-status Report
  • [Presentation] 外力付きクリスタライン曲率流の解の挙動について

    • Author(s)
      石渡 哲哉
    • Organizer
      ワークショップ ''Joint workshop on pure and applied mathematics''
    • Place of Presentation
      東北大学
    • Related Report
      2013 Research-status Report
    • Invited
  • [Presentation] Nelson diffusions and nonlinear Schrodinger equations

    • Author(s)
      H. Nawa
    • Organizer
      UVic one day Seminar on DospersivePDEs
    • Place of Presentation
      University of Victoria, Canada
    • Related Report
      2012 Research-status Report
    • Invited
  • [Presentation] Crystalline motion of spiral-shaped polygonal curve with a tip motion

    • Author(s)
      T. Ishiwata
    • Organizer
      International Conference on Free Boundary Problems
    • Place of Presentation
      Frauenchiemsee, Chiemsee, Germany
    • Related Report
      2012 Research-status Report
    • Invited
  • [Presentation] クリスタライン運動の解析

    • Author(s)
      石渡 哲哉
    • Organizer
      博多応用数学セミナー
    • Place of Presentation
      九州大学 医学部百年講堂
    • Related Report
      2012 Research-status Report
    • Invited
  • [Presentation] Spiral-shaped solutions to crystalline curvature flow with a tip motion

    • Author(s)
      石渡 哲哉
    • Organizer
      応用数学合同研究集会
    • Place of Presentation
      龍谷大学瀬田キャンパス
    • Related Report
      2012 Research-status Report

URL: 

Published: 2011-08-05   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi